K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

khó quá trời

18 tháng 8 2015

a : Gọi O là giao của HK và CB, ta có:

S của tam giác CHB= \(\frac{1}{2}OH\cdot CB\)  

S của tam giác BKC=\(\frac{1}{2}KO\cdot CB\) 

Mà ta có K là điểm đối xứng với H qua BC => KO=HO

Nên ta có thể thay 

S của tam giác BKC=\(\frac{1}{2}OH\cdot CB\) 

Hay \(Sbkc=Sbhc\)

Nếu đúng thì cho mk xin **** nha

23 tháng 4 2021

a) M đối xứng H qua BC

-> BC là đường trung trực MH

-> CH = CM ; BH = BM

Xét tam giác BHC và tam giác BMC:

CH = CM (cmt)

BC : chung

BH = BM (cmt)

-> Tam giác BHC = tam giác BMC (c-c-c)

b) Xét tứ giác ADHG:

\(\widehat{A}+\widehat{AGH}+\widehat{ADH}+\widehat{GHD}=360^o\)

\(\rightarrow\widehat{GHD}=360^o-\widehat{A}-\widehat{AGH}-\widehat{ADH}\)

\(\rightarrow\widehat{GHD}=360^o-60^o-90^o-90^o=120^o\)

\(\rightarrow\widehat{GHD}=\widehat{BHC}=120^o\)( đối đỉnh )

Mà \(\widehat{BHC}=\widehat{BMC}\)( tam giác BHC = tam giác BMC )

\(\rightarrow\widehat{BMC}=120^o\)

C D H M G B A

a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM(cmt)

CH=CM(cmt)

BC chung

Do đó: ΔBHC=ΔBMC(c-c-c)

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

23 tháng 8 2018

Ôn tập toán 8

a. Vì M đối xứng với H qua trục BC

⇒ BC là đường trung trực của HM

⇒ BH = BM ( tính chất đường trung trực)

CH = CM ( tính chất đường trung trực)

Suy ra: ∆ BHC = ∆ BMC (c.c.c)

b. Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E

H là trực tâm của ∆ ABC

⇒ BD ⊥ AC, CE ⊥ AB

Xét tứ giác ADHE ta có:

\(\widehat{DHE}=360^0-\left(\widehat{A}+\widehat{H}+\widehat{E}\right)\)

\(=360^0-\left(60^0+90^0+90^0\right)=120^0\)

\(\widehat{BHC}=\widehat{DHE}\) (đối đỉnh)

∆ BHC = ∆ BMC (chứng minh trên)

\(\Rightarrow\widehat{BMC}=\widehat{BHC}\)

Suy ra:\(\widehat{BMC}=\widehat{DHE}=120^0\)

9 tháng 10 2020

bn ơi phải là góc DHE=360 độ - (góc A +góc D+ gócE)