Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét tam giác ADB và tam giác ADE, ta có:
- AB = AE(gt)
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt)
- Chung cạnh AD
=> Tam giác ADB = Tam giác ADE(c-g-c) (1)
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)
tk nha bạn
thank you bạn
(^_^)
a b c d h 1 2 3 4 GT;abc là tam giác đều -> ab=bc=ca có hd là tia đối của ac -> ha=hd có ah vuông góc với ac -> h1=h2=h3=h4=90
xét tam giác ABD có góc H2=90 độ (GT) có H là trung điểm của AD(gt)
-> BH vừa là đường trung tuyến vừa là đường trung trực của tam giác ABD-> BH là đường phân giác mà HC thuộc HB
-> BC là tia phân giác của góc B ( dcpcm)
-> CB cũng là tia phân giác của góc C ( chứng minh tương tự)
câu B)
Xét tam giác ABD có BH là đường ( phân giác . trung trực . trung tuyến.)
-> ABD cân tại B -> BD=BA (dcpcm)
Xét tam giác ACD chứng minh tương tự
-> CA=CD (dcpcm)
6
a. Do tam giác ABC là tam giác đều nên CB = CA. Lại do CB = CD nên CD = CA, hay tam giác ACD cân tại C.
Khi đó do CE là đường cao nên đồng thời là trung tuyến. Vậy thì E là trung điểm AD, hay AE = DE.
Do ^ACB là góc ngoài tại đỉnh C của tam giác ACD nên ^ACB=2^CAD⇒^CAD=30o.
Vậy thì ^BAD=90o, hay tam gíac ABD vuông tại A.
b) Ta thấy ^FAD=^FAC+^CAD=30o+30o=60o.
Lại thấy FE là đường trung tuyến đồng thời là đường cao nên tam giác AFD cân. Tóm lại tam giác AFD đều.
Do C là giao của 3 đường cao trong tam giác đều FAD nên đồng thời nó cũng là trọng tâm tam giác.