Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Áp dụng định lý Talet trong \(\Delta ABH\) , ta được :
\(\frac{MK}{BH}=\frac{AK}{AH}\left(1\right)\)
Áp dụng định lí Ta let trong \(\Delta ACH\), ta được :
\(\frac{NK}{CH}=\frac{AK}{AH}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\frac{MK}{BH}=\frac{NK}{CH}\)
Vì H là trung điểm của BC \(\Rightarrow BH=CH\)
\(\Rightarrow MK=NK\)
Mà \(K\in MN\)
\(\Rightarrow K\)là trung điểm của \(MN\left(đpcm\right)\)
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Bài 2:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔABC có
MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)
hay MN=6(cm)