Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BEC}=90^0\)(Hệ quả góc nội tiếp)
Xét (O) có
\(\widehat{BFC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BFC}=90^0\)(Hệ quả góc nội tiếp)
Xét tứ giác BEFC có
\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BFC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEFC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
góc BFC=góc BEC=1/2*sđ cung BC=90 độ
=>BF vuông góc AC,CE vuông góc AB
Xét ΔABC có
BF,CE là đường cao
BF cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại N
góc HNC+góc HFC=180 độ
=>HNCF nội tiếp
a: góc BEC=góc BDC=1/2*180=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc EFH=góc ABD
góc DFH=góc ACE
mà góc ABD=góc ACE
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K