Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/hoi-dap/tim-kiem?id=62067&q=cho%20tam%20gi%C3%A1c%20ABC%20nh%E1%BB%8Dn%20c%C3%B3%20BC%3Da%3B%20AC%3Db%3B%20AB%3Dc%3BCMR%3A%20a%2FsinA%3Db%2FsinB%3Dc%2Fsin%20C
kẻ đường cao AH,BD,CK
ta có sinA=BD/AB=> BD=sinA.AB
sinB=CK/BC=> CK=sinB.BC
sinC=AH/AC=> AH=sinC.AC
ta có sin B=KC/BC=KC/a; sinB=AH/AB=AH/c
=> KC/a=AH/c
=> \(\frac{sinB.a}{a}=\frac{sinC.b}{c}\)
=> \(sinB=\frac{sinC.b}{c}\)
=> sinB.c=sinC.b
=> \(\frac{b}{sinB}=\frac{c}{sinC}\left(1\right)\)
ta lại có sinC=AH/AC=AH/b; sinC=BD/BC=BD/a
=> AH/b=BD/a
=> \(\frac{sinC.b}{b}=\frac{sinA.c}{a}\)
=> sinC.a=sinA.c
=> \(\frac{c}{sinC}=\frac{a}{sinA}\left(2\right)\)
(1),(2)=> a/sinA=b/sinB=c/sinC (đpcm)
minh biet lam cau b)
A B C D N M
ke phan giac AD , BM vuong goc AD , CN vuong goc AD
sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)
ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)
=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)
dau = xay ra <=> AD vuong goc BC => AD la duong phan giac ,la duong cao => tam giac ABC can tai A => AB=AC => b=c
tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)
=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)
ap dung cosi cjo 2 so duong b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)
=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)
\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)
dau = xay ra <=> a=b=c hay tam giac ABC deu
A B C H K M
Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)
\(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)
Lại có : \(BH\le BM;CK\le CM\)
\(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)
\(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
A B C H K
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : sinA=BKABsinA=BKAB ; sinB=AHABsinB=AHAB ; sinC=AHACsinC=AHAC
⇒ABsinC=ABAHAC=AB.ACAH⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAHACsinB=ACAHAB=AB.ACAH
⇒csinC=bsinB⇒csinC=bsinB (1)
Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinCBK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC
⇒asinA=csinC⇒asinA=csinC (2)
Từ (1) và (2) ta có : asinA=bsinB=csinCasinA=bsinB=csinC (Đpcm)
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Ta có:
\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ đường cao CH của tam giác ABC. Ta có:
Chứng minh tương tự ta có: