K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Đáp án A

14 tháng 8 2017

31 tháng 1 2018

6 tháng 3 2023

Tại sao lại ra được x+6y+9 ạ

 

 

22 tháng 8 2017

Ta có tứ giác BOKC là tứ giác nội tiếp đường tròn suy ra  O K B ^ = O C B   ^   1

Ta có tứ giác KDHC là tứ giác nội tiếp đường tròn suy ra  D K H ^ = O C B ^   2

Do đó BK là đường phân giác trong của góc  O K H ^  và AC là đường phân giác ngoài của góc O K H ^ .

Tương tự ta chứng minh được OC là đường phân giác trong của góc   K O H ^ và AB là đường phân giác ngoài của góc  K O H ^

Chọn D

7 tháng 2 2018

13 tháng 1 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc và H là trực tâm Δ A B C ⇒ O H ⊥ m p A B C  

Khi đó d O ; A B C = O H = 3 ⇒  Phương trình mặt cầu là x 2 + y 2 + z 2 = 9

12 tháng 7 2015

A B C d2 d1 H

A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)

Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC

=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)

Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))

Đường cao CH  đi qua H và có vtcp chính là vtpt của  AB  là \(\vec{n}\) (5; -3) 

=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\) 

B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ :  \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)

Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)

=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)

23 tháng 1 2018

chỉ bài này mk với