K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

A K I D E H B F C

a ) Ta có : \(BD\perp AC,CE\perp AB\)

\(\Rightarrow\widehat{ADH}=\widehat{AEH}=90^0,\widehat{BDC}=\widehat{BEC}=90^0\)

\(\Rightarrow ADHE,BEDC\) nội tiếp

b . Ta có : \(\widehat{DHC}=\widehat{EHB},\widehat{HDC}=\widehat{HEB}=90^0\)

\(\Rightarrow\Delta HDC~\Delta HEB\left(g.g\right)\)

\(\Rightarrow\frac{HD}{HE}=\frac{HC}{HB}\Rightarrow HD.HB=HE.HC\)

c . Vì H là trực tâm \(\Delta ABC\Rightarrow AH\perp BC=F\)

Lại có : \(\widehat{AHD}=\widehat{CBF}\left(+\widehat{FAC}=90^0\right)\)

\(\widehat{AID}=\widehat{ACB}\Rightarrow\widehat{AID}=\widehat{AHD}\)

\(\Rightarrow\Delta AHI\) cân tại A 

Mà \(AD\perp HI\Rightarrow AD\) là trung trực của HI \(\Rightarrow\)AC là đường trung trực của của HI.

d ) Từ câu c \(\Rightarrow AI=AH\)

Tương tự \(\Rightarrow AK=AH\Rightarrow A\) là tâm đường tròn ngoại tiếp \(\Delta HIK\)

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

12 tháng 2 2017

AB không nhất thiết phải nhỏ hơn AC nhé các bác

12 tháng 2 2017

em sửa chỗ kia chút cắt AB tại D, AC tại E

30 tháng 3 2022
Ai giúp em với😢
10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Hình vẽ: