Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do: Góc ABD = Góc ACE (= 90 - A)
=> Δ ABD ∼ Δ ACE (2 Δ vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM2 = AN2 (Hệ thức lượng trong Δ vuông)
<=> AM = AN
Hay Δ AMN cân tại A.=>....
Áp dụng HTL tam giác AMC vuông tại M và ANB vuông tại N có
\(\left\{{}\begin{matrix}AM^2=AD\cdot AC\left(1\right)\\AN^2=AE\cdot AB\left(2\right)\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\widehat{AEC}=\widehat{ADB}=90^0\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEC\sim\Delta ADB\left(g.g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AE\cdot AB=AC\cdot AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow AM^2=AN^2\Rightarrow AM=AN\\ \RightarrowĐpcm\)
Trong t/g vuông ANB có NE là đường cao: AN^2 = AE.AB
Trong t/g vuông AMC có MD là đường cao: AM^2 = AD.AC
Mà t/g ABD ~ t/g ACE (g.g) nên AB/AC = AD/AE <=> AB.AE = AC.AD
=> AN^2 = AM^2 <=> AN = AM
A B C D E H M N
Xét hai tam giác vuông : tam giác DAB và tam giác EAC có :
góc A là góc chung , góc EAC = góc ADB = 90 độ
=> tam giác DAB đồng dạng tam giác EAC
=> \(\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AD.AC\)
Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông ABN có đường cao NE:\(AN^2=AE.AB\)
Áp dụng hệ thức về cạnh trong tam giác vuông AMC có đường cao MD :
\(AM^2=AD.AC\)
Mà AE . AC = AD . AC => \(AM^2=AN^2\Rightarrow AM=AN\) (đpcm)
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank