Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) -△AEF và △ABC có: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(△ABE∼△ACF), \(\widehat{BAC}\) chung.
\(\Rightarrow\)△AEF∼△ABC (c-g-c) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\).
-△MFB và △MEC có: \(\widehat{FMB}=\widehat{EMC}\) , \(\widehat{MFB}=\widehat{MEC}=90^0\)
\(\Rightarrow\)△MFB∼△MEC (g-g) \(\Rightarrow\dfrac{MF}{ME}=\dfrac{MB}{MC}\).
-△MEF và △MCB có: \(\dfrac{MF}{MB}=\dfrac{ME}{MC}\left(\dfrac{MF}{ME}=\dfrac{MB}{MC}\right),\widehat{EMF}=\widehat{CMB}\)
\(\Rightarrow\)△MEF∼△MCB (c-g-c) \(\Rightarrow\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{AK}{AD}.\dfrac{AE}{AC}=\dfrac{S_{AKE}}{S_{ADC}}=\dfrac{S_{AFK}}{D_{ADB}}=\dfrac{S_{AKE}+S_{AFK}}{S_{ADC}+S_{ADB}}=\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{MK}{MD}.\dfrac{AE}{AC}=\dfrac{S_{MEK}}{S_{MDC}}=\dfrac{S_{MFK}}{S_{MDB}}=\dfrac{S_{MEK}+S_{MFK}}{S_{MDC}+S_{MDB}}=\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{AK}{AD}=\dfrac{MK}{MD}\Rightarrow AK.MD=MK.AD\)
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
cau c cm tg feh dong dang voi tg bhc do co goc fhe bang bhc(dd) va co fh/bh=he/hc vi fh/he= bh/hc do tg bfh dong dang hec
a) Xét \(\Delta CEH\)và \(\Delta CFA\)có:
\(\widehat{CEH}=\widehat{CFA}=90^0\)
\(\widehat{ACF}\) chung
suy ra: \(\Delta CEH~\Delta CFA\) (g.g)
b) Xét \(\Delta FHB\)và \(\Delta EHC\)có:
\(\widehat{HFB}=\widehat{HEC}=90^0\)
\(\widehat{FHB}=\widehat{EHC}\)(đối đỉnh)
suy ra: \(\Delta FHB~\Delta EHC\) (g.g)
\(\Rightarrow\)\(\frac{FH}{EH}=\frac{HB}{HC}\) \(\Rightarrow\)\(FH.HC=HB.HE\)
c) \(\frac{FH}{EH}=\frac{HB}{HC}\)(cmt) \(\Rightarrow\)\(\frac{FH}{HB}=\frac{EH}{HC}\)
Xét \(\Delta HFE\)và \(\Delta HBC\)có:
\(\frac{FH}{HB}=\frac{EH}{HC}\)
\(\widehat{EHF}=\widehat{CHB}\) (dd)
suy ra: \(\Delta HFE~\Delta HBC\)
\(\Rightarrow\)\(\widehat{FEH}=\widehat{BCH}\)