Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
câu c nè, tam giác ahb=tam giác ahc(chứng minh trên) suy ra bh=ch(tc) suy ra dh là trung tuyến
k là trung điểm của ac(gt) suy ra ek là trung tuyến
suy ra cg cũng là trung tuyến
suy ra cg,dh,ek cùng đi qua 1 điểm
Bn tự vẽ hình nhé
a) Xét \(\Delta BME,\Delta CMA\) có:
AM = EM (gt)
\(\widehat{BME}=\widehat{CMA}\) (đối đỉnh)
BM = CM = \(\frac{1}{2}\)BC (gt)
\(\Rightarrow\Delta BME=\Delta CMA\left(c-g-c\right)\)
=> \(\widehat{CBE}=\widehat{BCA}\) (góc tương ứng)
mà \(\widehat{CBE}\) và \(\widehat{BCA}\) nằm ở vị trí so le trong
=> AC // BE (đpcm)
câu 2 mk bí quá, k bk khi có 2 góc đối đỉnh = nhau thì 3 điểm đó có đc coi là thẳng hàng k