Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée
Xét \(\Delta ABM\)và\(\Delta ECM\)có :
\(M_1=M_2\)(đối đỉnh)
\(BM=CM\)(gt)
\(AM=EM\)(gt)
\(=>\Delta ABM=\Delta ECM\)(c.g.c)
b,Do \(\Delta ABM=\Delta ECM\)(câu a)
\(=>A=E\)
\(=>AB//EC\)(so le trong)
c, Do \(HF\)là tia đối của tia \(HA\)(1)
Mà\(AHB=90^0\)(2)
Từ (1) và (2) => \(FHB=AHB=90^0\)
Xét \(\Delta AHB\)và \(\Delta FHB\)có :
\(AH=FH\)(gt)
\(HB\)(cạnh chung)
\(AHB=FHB\)(c/m trên)
\(=>\Delta AHB=\Delta FHB\)(c.g.c)
\(=>ABH=FBH\)
\(=>ĐPCM\)
P/S: Chưa check lại và chưa ghi dấu nón cho góc =))
A B H M N C I
a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:
\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\) cạnh chung \(BH\)
\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )
b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )
\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)
Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:
\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)
\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )
c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:
\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)
\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)
\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)
\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)
Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)
Vì I là trung điểm của BC => BI = CI
Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:
\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)
\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)
\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )
d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:
\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)
\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)
Xét tam giác vuông AHC, theo định lý Py-ta-go ta có:
\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)
\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)
Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)
a, Xét tam giác AMB và tam giác EMC có
ME=MA (gt)
Góc AMB=góc EMC( 2 góc đối đỉnh)
MB=MC(gt)
Suy ra tam giác AMB = tam giác EMC
Suy ra: góc BAM= góc CEM ( 2 góc tương ứng)
b, góc BAM= góc CEM ( chứng mình trên)
M à 2 góc này ở vị trí so le trong
Suy ra AB song song EC
c, Xét tam giác BHF và tam giác BHA có
HF= HA( gt)
Góc BHF= góc BHA ( 180 độ - 90 độ= 90 độ)
BH là cạnh chung
Suy ra tam giác BHF= tam giác BHA(c. g. c)
Suy ra góc HBF= HBA ( 2 góc tương ứng)
Suy ra BH là tia phân giác của góc ABF
PS: bạn tự ghi giả thiết kết luận nha
a) xét tam giác AMH và tam giác NMB có:
AM=MN(gt)
\(\widehat{AMH}\)=\(\widehat{NMB}\)(vì đối đỉnh)
BM=MH(gt)
=> tam giác AMH=tam giác NMB(c.g.c)
=> \(\widehat{NBM}\)=\(\widehat{AHM}\)mà góc AHM=90 độ => \(\widehat{NBM}\)=90 độ
=> NB\(\perp\)BC
b) vì tam giác AMH=tam giác NMB(câu a)=> AH=NB(2 cạnh tương ứng)
trong tam giác AHB có: AB>AH(vì cạnh huyền lớn hơn cạnh góc vuông)
mà AH=NB(cmt) => NB<AB
c) vì theo câu b ta có NB<AB => \(\widehat{BNA}\)>\(\widehat{BAN}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)
mà \(\widehat{BNA}\)=\(\widehat{MAH}\)(theo câu a) => \(\widehat{BAM}\)< \(\widehat{MAH}\)
d)
A B C H M N I
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Câu hỏi của Khanh Linh Ha - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
cậu không giải bài giúp tôi thì cũng đừng cmt như thế
hình em tự vẽ nhé
Xét tam giác AND có H là trung điểm của AN,M là trung điểm của AD(gt)
\(\Rightarrow HM\)là đường trung bình của tam giác AND
\(\Rightarrow HM//ND\)
Mà \(H\in BC;M\in BC\)
\(\Rightarrow BC//ND\)