K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

a, xét tam giác ABC có : 

AB = AC 

=> tam giác ABC cân 

=> góc B = góc C ( hai góc đáy bằng nhau ) 

b, Xét tam giác ACM và tam giác ABM có :

AC = AB ( gt ) 

góc B = góc C ( phần a ) 

AM chung 

=> tam giác ACM = tam giác ABM ( c. g . c ) 

=> CM = BM ( 2 cạnh tương ứng ) 

=> M là trung điểm của BC 

10 tháng 4 2016

a)

xét tam giác ABK và tam giác DCK có:

KB=KB(gt)

KA=KD(gt)

BKA=DKC(2 góc đđ)

suy ra tam giác ABK=DCK(c.g.c)

suy ra BAK=DCK

suy ra AB//CD

b)

theo câu a, ta có tam giác ABK=DCK(c.g.c0

suy ra AB=DC

ta có: AB//DC mà BAK= 90 độ suy ra DCK=90

xét tam giác ABH và CDH có:

AB=CD(cmt)

HA=HC(gt)

BAH=DCH=90

suy ra tam giác ABH=CDH(c.g.c)

17 tháng 8 2015

a) cm tam giac EDA= tam giac EFC ( c=g=c)--> AD= CF ma BD= AD ( D la trung diem AB)---? CF=BD

b)cm AB//CF : ta co goc EAD = goc ECF ( tam giac EDA = tam giac EFC ) ma 2 goc nam o vi tri so le trong nen AD//CF hay AB//CF

xet tam giac BDC va tam giac FCD ta co:

BD= CF ( cm cau a); DC = DC ( canh chung ),goc BDC= goc DCF ( 2 goc so le trong va AB//CF)

--> tam giac BDC = tam giac FCD ( c-g-c)

c) ta co BC= DF ( tam giac BDC= tam giac FCD )

        ma DE=1/2 DF ( E la trung diem DF)

nen DE=1/2 BC

Vẽ Đi Cho Mình Tham Khảo Với

16 tháng 11 2016

A B C M N P 1 2 1 1 1 1

Trên tia đói của tia NM lấy P sao cho MN = NP

Xét \(\Delta AMN\)\(\Delta CPN\) có :

AN = NC ( gt )

\(\widehat{N_1}=\widehat{N_2}\)( đối đỉnh )

MN = NP ( cách vẽ )

=> \(\Delta AMN\) = \(\Delta CPN\) ( c . g . c) (1)

(1) => CP = AM

=> CP = BM

(1) \(\Rightarrow\widehat{C_1}=\widehat{A_1}\)

=> PC // AB

Xét \(\Delta BMC\)\(\Delta PCM\) có :

\(\widehat{BMC}=\widehat{PCM}\) ( PC // AB )

Chung MC

MB = PC ( c/m trên )

=> \(\Delta BMC\) = \(\Delta PCM\) (2)

(2) => MP = BC

=> NP = 1 / 2 . MP

=> NP = 1/2 . Bc

(2) => MN // BC

16 tháng 11 2016

Trên tia đối của tia MN, lấy điểm D sao cho N là trung điểm của MD.

Xét tam giác ANM và tam giác CND có:

AN = CN (N là trung điểm của AC)

ANM = CND (2 góc đối đỉnh)

NM = ND (N là trung điểm của MD)

=> Tam giác ANM = Tam giác CND (c.g.c)

=> AM = CD (2 cạnh tương ứng) mà AM = MB (M là trung điểm của AB) => MB = CD

AMN = CDN (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AM // CD

Xét tam giác BMC và tam giác DCM có:

BM = DC (chứng minh trên)

BMC = DCM (2 góc so le trong, AM // CD)

MC chung

=> Tam giác BMC = Tam giác DCM (c.g.c)

=> BCM = DMC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => MN // BC

MD = BC (2 cạnh tương ứng) mà MD = 2MN (N là trung điểm của MD) => BC = 2MN