K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

A B C M N D E

\(\widehat{ADB}=\widehat{MBC}\) Hai góc trên ở vị trí so le trong => AD//BC

\(\widehat{AEN}=\widehat{NCB}\) Hai góc trên ở vị trí so le trong => AE//BC

\(\Rightarrow AD\equiv AE\) (Từ 1 điểm ở ngoài 1 đường thẳng đã cho chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng cho trước)

=> E; A; D thẳng hàng

8 tháng 10 2021

ta có góc MBC = góc MDA (giả thiết ) mà B,M, D thẳng hàng
góc MBC và góc MDA ở vị trí so le => AD//BC (1)
C/m tương tự ta cũng có AE //BC (2)
- do M là trung điểm của AC, N là trung điểm của AB => MN là đường trung bình của tam giác ABC => MN //BC (3)
từ (1),(2) và (3) =>AE//NM, AD//NM
-góc EAN = ANM (so le)
góc DAM = AMN (so le)
góc EAD = góc EAN +góc DAM +góc NAM
= góc ANM +góc AMN + góc NAM
=180 độ( tổng 3 góc trong 1 tam giác bằng 180 )
vậy goc EAD =180 độ => E,A, D thẳng hàng

10 tháng 11 2019

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)Xét tam giác AKM và tam giác BKC có:

AK = BK (K là trung điểm của AB)

AKM = BKC ( 2 góc đối đỉnh)

KM = KC (gt)

=> Tam giác AKM = Tam giác BKC (c.g.c)

=> AM = BC (2 cạnh tương ứng) (1)

AMK = BCK (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AM // BC (2)

Xét tam giác AEN và tam giác CEB có:

AE = CE (E là trung điểm của AC)

AEN = CEB (2 góc đối đỉnh)

EN = EB (gt)

=> Tam giác AEN = Tam giác CEB (c.g.c)

=> AN = CB (2 cạnh tương ứng) (3)

ANE = CBE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AN // CB (4)

Từ (1) và (3)

=> AM = AN (5)

Từ (2) và (4)

=> A, M, N thẳng hàng (6)

Từ (5) và (6)

=> A là trung điểm của MN

10 tháng 11 2019

NHỚ K NHA!!!

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8cm

mà AD=AC

nên AD=8cm

b: Xét ΔBCD có 

BA là đường trung tuyến ứng với cạnh CD

\(BM=\dfrac{2}{3}BA\)

Do đó: M là trọng tâm của ΔBCD

Suy ra: DM là đường trung tuyến ứng với cạnh BC

mà DE là đường trung tuyến ứng với cạnh BC

và DM,DE có điểm chung là D

nên D,M,E thẳng hàng