K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

a)Từ A kẻ đường thẳng đi qua M cắt BC tại H

Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)

Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)

\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)

3 tháng 8 2021

thank

 

 

10 tháng 7 2019

A B C M E

a) Xét tam giác: AMB và AMC có:

AM chung

BM=CM ( gt)

AB=AC ( tam giác ABC đều)

=> Tam giác AMB =Tam giác AMC (1)

b) Xét tam giác MBC vuông cân tại M

=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)

Tam giác ABC đều 

=> \(\widehat{ACB}=60^o\)

=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)

\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)

=> \(\widehat{ACM}=\widehat{BCE}\)(2)

Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)

=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)

=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)

Xét tam giác MCA và tam giác ECB

có: AC=CB ( tam giác ABC đều)

\(\widehat{ACM}=\widehat{BCE}\)( theo (2))

\(\widehat{EBC}=\widehat{MAC}\)( theo (3))

=> Tam giác MCA =Tam giác ECB

=> CM=CE

=> tam giác MEC cân

10 tháng 7 2019

M A B C N 3 4 5 3 3

Câu c) Trên nửa mặt phẳng bờ AM  không chứa điểm C dựng tam giác đều AMN

=> \(\widehat{AMN}=60^o\)

và NA=NM=AM

Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)

=> \(\widehat{NAB}=\widehat{MAC}\)(1)

Xét tam giác NAB và tam giác MAC 

có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)

\(\widehat{NAB}=\widehat{MAC}\)( theo (1))

=> Tam giác NAB=MAC

=> NB=MC

Suy ra: MN:BM:NB=MA:MB:MC=3:4:5

=> Tam giác NMB vuông tại M

=> \(\widehat{NMB}=90^o\)

=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)

30 tháng 6 2017


a, Xét tam giác ABC có:

BAC + (ABC + ACB)=1800

Xét tam giác MBC có:

BMC + (MCB + MBC)=1800

\(\Rightarrow\)BAC + (ABC + ACB) = BMC + (MCB + MBC) (1)

Vì M nằm trong tam giác ABC nên BM nằm giữa 2 tia BC và BA.

\(\Rightarrow\) ABC > MBC

Tương tự ta được: ACB > MCB.

\(\Rightarrow\)ABC + ACB > MBC + MCB (2)

Từ (1) và (2) suy ra: BAC < BMC.

b, Kéo dài AM, cắt BC tại E.

Xét tam giác ABM có BME là góc ngoài tại đỉnh M nên ta có:

BME = MAB + MBA. (1)

Tương tự đối với tam giác AMC có CME là góc ngoài tại đỉnh M nên ta cũng có:

CME = MAC + MCA. (2)

Từ (1) và (2) suy ra:

BME+CME = MAB + MBA + MAC + MCA.

\(\Rightarrow\)BMC = BAC + ABM + ACM

Sorry bn, mk ko gõ đc dấu mũ nha