Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)
\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\)
b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)
\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng vói ΔABC
b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)
AH=3*4/5=2,4cm
HB=4^2/5=3,2cm
c: FH/FA=BH/BA
EA/EC=BA/BC
BH/BA=BA/BC
=>FH/FA=EA/EC
a) Xét \(\Delta BDF\)và \(\Delta EDC\) có:
\(\widehat{BDF}=\widehat{EDC}=90^0\)
\(\widehat{BFD}=\widehat{ECD}\) (DO CÙNG PHỤ VỚI GÓC ABC )
Suy ra: \(\Delta BDF~\Delta EDC\)
\(\Rightarrow\)\(\frac{BD}{ED}=\frac{DF}{DC}\)
\(\Rightarrow\)\(BD.DC=ED.FD\)
a) xét tam giác ABC và HAC có:
góc CAB=gócCHA=90độ
chung ACH
suy ra tam giác ABCđồng dạng với tam giác HAC
=> \(\frac{BC}{AC}=\frac{AC}{CH}=>AC^2=BC\cdot CH\)
b) vì tam giác ABC vuông tại A,áp dụng định lý pitago bạn sẽ tính được BC
thay vào \(\frac{BC}{AC}=\frac{AC}{CH}\)
bạn sẽ tính được CH,sau đó tương tự áp dụng pitago cho các tam giác còn lai là ra nhé
kết quả:HC=9,6;AH=7,2;BH=5,4