Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy X, Y lần lượt đối xứng A qua H và M.
Dễ thấy ΔΔAMB cân( đường cao đồng thời là phân giác)
suy ra ABXM là hình thoi
ta có M vừa là trung điểm BC vừa là trung điểm AY
=> ABYC là hình bình hành
suy ra CY=AB=XM và XMBˆ=ABCˆXMB^=ABC^ = MCYˆMCY^
=> CY∖∖XMCY∖∖XM
=>XYCM là hình bình hành=> MC=XY
mà ta còn có AC=BY ( hbh)
BX=AM ( hình thoi)
=> ΔAMC=ΔBXYΔAMC=ΔBXY
=> XBYˆ=MACˆ=XAYˆXBY^=MAC^=XAY^
mà AY∖∖BXAY∖∖BX
=>AXBY là hình thang cân
=>AB=XY=MC=MB=AM
=> tam giác AMB đều
=>BAMˆ=Bˆ=60oBAM^=B^=60o=>Aˆ=90o,C=30oˆ
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm