K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác BDCE có 

I là trung điểm của BC

I là trung điểm của DE

DO đó: BDCE là hình bình hành

Suy ra: CE//BD

=>CH//BD

=>CH\(\perp\)AH

hay ΔHAC vuông tại H

18 tháng 12 2017

A C D I H B I

Hình vẽ ko chuẩn xác cho lắm 

Chứng minh \(\Delta AHC\)là \(\Delta\)vuông

Xét \(\Delta ECI\)và \(\Delta DBI\)có:

\(EI=ID\) ( giả thiết )

\(BI=IC\)( I là trung điểm của \(BC\))

\(\widehat{EIC}=\widehat{DIB}\)( 2 góc đối đỉnh)

do đó \(\Delta ECI=\Delta DBI\)( C.G.C)

\(\Rightarrow\widehat{CEI}=\widehat{BDI}\)( 2 góc tương ứng)

\(\Rightarrow EC\)song song với \(BD\)

mà \(H\)là giao điểm của \(EC\)và \(AB\)

\(\Rightarrow H\in EC\)

\(\Rightarrow HC\)song song với \(BD\)

theo bài ra \(BD\perp AB\)cắt \(AI\)tại \(D\)

\(\Rightarrow HC\perp AB\) ( 2 góc ở vị trí đồng vị do \(HC\)và \(BD\)tạo thành)

\(\Rightarrow\Delta AHC\)vuông tại \(H\) ( điều phải chưng minh)

vậy \(\Delta AHC\)vuông tại \(H\)

7 tháng 12 2017

xét 2 \(\Delta IEC\)\(\Delta IDB\)có : IE=ID(giả thiết) ; IC=IB(giả thiết);\(\widehat{EIC}=\widehat{BID}\)(đối đỉnh)

=>\(\Delta IEC=\Delta IDB\)(c.g.c)

=>\(\widehat{ECI}=\widehat{IBD}\)

mà hai góc này ở vị trí so le trong =>EC//BD

=>\(\widehat{DBH}=\widehat{CHB}\)(đồng vị)

mà \(\widehat{DBH}\)=90*=>\(\widehat{CHB}=90^0\)

trong \(\Delta AHC\)có \(\widehat{CHB}=90^0\)=>\(\Delta AHC\)vuông ở H

1 tháng 2 2017

xét \(\Delta\) BID và \(\Delta\) EIC có

ID = IE ( gt)

BI = IC ( I là t/điểm của BC )

\(\widehat{BID}\) = \(\widehat{EIC}\) ( đối đỉnh )

=>\(\Delta\) BID = \(\Delta\) CIE ( cgc )

=> \(\widehat{BDI}\) = \(\widehat{IEC}\) ( 2 góc tương ứng ) mà \(\widehat{IEC}\) = \(\widehat{AEH}\) ( đối đỉnh )

=> \(\widehat{AEH}\) = \(\widehat{BDI}\) mà hai góc này ở vị trí đồng vị

=>HC // BD mà BD \(\perp\)AB (gt) => HC \(\perp\) AB

=> \(\Delta\) AHC vuông tại H

haha

1 tháng 2 2017

A B C D I H E

5 tháng 5 2019

tam giác ABC có : BE; CF là trung tuyến và cắt nhau tại I

=> AI là trung tuyến (tc)

mà tam giác ABC cân tại A (Gt)

=> AI là phân giác của góc BAC (đl)

5 tháng 5 2019

a)Xét\(\Delta ABC\)có:\(BE\)là đg trung tuyến xuất phát từ đỉnh\(B\left(GT\right)\)

\(CF\)là đg trung tuyến xuất phát từ đỉnh\(C\left(GT\right)\)

\(BE\)cắt\(CF\)tại\(I\)

\(\Rightarrow AI\)là đg trung tuyến xuất phát từ đỉnh\(A\)(Định lí về tính chất 3 đg trung tuyến của 1\(\Delta\))

\(\Delta ABC\)cân tại\(A\left(GT\right)\)

\(\Rightarrow AI\)vừa là đg trung tuyến vừa là đg p/g của\(\Delta ABC\)(Tính chất của tg cân)

b)Xét\(\Delta ABI\)\(\Delta ACI\)có:

\(AI\)là cạnh chung

\(\widehat{BAI}=\widehat{CAI}\)(\(AI\)là tia p/g của\(\widehat{BAC}\))

\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))

Do đó:\(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 cạnh t/ứ)

\(BI=CI\)(2 cạnh t/ứ)

Xét\(\Delta ABE\)\(\Delta ACF\)có:

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(AB=AC\)​(\(\Delta ABC\)cân tại\(A\))

\(\widehat{BAC}\)là góc chung
Do đó:\(\Delta ABE=\Delta ACF\left(g-c-g\right)\)
\(\Rightarrow BE=CF\)(2 cạnh t/ứ)
Xét\(\Delta IBC\)có:\(IB=IC\left(cmt\right)\)
Do đó:\(\Delta IBC\)cân tại\(I\)(Định nghĩa\(\Delta\)cân)
c)Gọi\(M\)là giao điểm của\(AI\)\(BC\),\(H\)là đg cao xuất phát từ đỉnh\(P\)của\(\Delta ABP\)
Xét\(\Delta ABC\)có:\(AM\)là tia p/g của\(\widehat{BAC}\))
\(\Delta ABC\)cân tại\(A\left(GT\right)\)
\(\Rightarrow AM\)là đg trung trực của\(BC\)(Tính chất về tg cân)
\(\Rightarrow AM\perp BC\)
hay\(AP\perp BM\)
Xét\(\Delta ABP\)có:\(BM\)là đg cao xuất phát từ đỉnh\(B\left(cmt\right)\)
\(PH\)là đg cao xuất phát từ đỉnh\(P\left(GT\right)\)
\(BM\)cắt\(PH\)tại\(K\)
\(\Rightarrow AK\)là đg cao thứ 3 của\(\Delta ABP\)hay\(AK\perp BP\)
 
27 tháng 2 2020

a, xét tam giác ABC và tam giác DBE có : góc B chung

AB = BD (Gt)

góc BAC = góc BDE = 90

=> tam giác ABC = tam giác DBE (cgv-gnk)

b, xét tam giác ABH và tam giác DBH có : BH chung

AB = BD (Gt)

góc HAB = góc HDB = 90 

=> tam giác ABH = tam giác DBH (ch-cgv)

=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD

=> BH là pg của góc ABC (đn)

c, AB = BD (gt) có BD = 6 (gt)

=> AB = 6 

BD + DC = BC 

BD = 6; CD = 4

=> BC =10

tam giác ABC vuông tại A (Gt)

=> BC^2 = AB^2 + AC^2

=> AC^2 = 10^2 - 6^2

=> AC^2 = 64

=> AC = 8 do AC > 0

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath