Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\widehat{HBD}=\widehat{EBC}=\widehat{CAD}$ (cùng phụ góc $\widehat{ACB}$)
$\widehat{CAD}=\widehat{CAK}=\widehat{KBC}=\widehat{KBD}$ (góc nt chắn cung $CK$)
$\Rightarrow \widehat{HBD}=\widehat{KBD}$
Xét tam giác vuông tại $D$ là $HBD$ và $KBD$ có:
$\widehat{HBD}=\widehat{KBD}$ (cmt)
$BD$ chung
$\Rightarrow \triangle HBD=\triangle KBD$ (g.c.g)
$\Rightarrow HD=KD$ (đpcm)
Hình hơi rối, bạn tự vẽ hình nhé!
Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.
Vì \(ME=MA=MH\)( tính chất trung tuyến )
Kết hợp tính đối xứng của điểm S ta có:
\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)
=> Tứ giác MESB nội tiếp
\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)
Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)
Nên tứ giác KSCE cũng nội tiếp
=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)
Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\)
Nên tứ giác RBCE nội tiếp
=> \(\widehat{BRC}=\widehat{BEC}=90^o\)
Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)
Nên K là trực tâm của \(\Delta BMC\)
tgB = \(\dfrac{AD}{BD} \) ; tgC \(= \dfrac{AD}{CD} \)
\(\Leftrightarrow\) tgB . tgC = \(\dfrac{AD^2}{BD.CD} \) (1)
\(\Rightarrow\) \(\bigtriangleup{BDH} \sim \bigtriangleup{ADC}\)
\(\Rightarrow\) \(\dfrac{DH}{DC} = \dfrac{DB}{AD} \)
\(\Rightarrow\) \(DB . DC = DH . AD \) (2)
Từ (1) và (2) \(\Rightarrow\) tgB . tgC = \(\dfrac{4DH^2}{DH.AD} = \dfrac{4DH^2}{2DH^2} = 2\) (đpcm)
Vẽ đường kính BK của đường tròn tâm O ngoại tiếp tam giác ABC=> O trung điểm BK
Gọi M là chân đường vuông góc hạ từ O xuống dây BC => OM là khoảng cách từ O tới BC
Có OB=OC và B,C nằm trên đường tròn tâm O=> tam giác OBC cân tại O, đường cao OM=> M trung điểm BC
=> OM là đường trung bình tam giác BCK=> \(OM=\frac{1}{2}CK\)
C thuộc đường tròn đường kính BK=> tam giác BCK vuông tại K=> \(KC\perp BC\)
Mà \(AH\perp BC\Rightarrow AH//CK\)
A thuộc đường tròn đường kính BK=> tam giác BAK vuông tại A=> \(AK\perp AB\)
Mà \(CH\perp AB\Rightarrow CH//AK\)
=> AHCK là hình bình hành => \(AH=CK\Rightarrow OM=\frac{1}{2}AH\)
A B C H D E F Sửa lại đề nhé: \(\dfrac{AH}{DH}=k\)
Do \(CF\perp AB;AD\perp BC\Rightarrow\) góc AFH = góc ADB
\(\Rightarrow\Delta AFH\sim\Delta ADB\left(g.g\right)\Rightarrow\)góc ABC = góc AHF = góc DHC
\(\Rightarrow tgB=tgD\widehat{H}C=\dfrac{DC}{DH}\)
lại có: tgC = \(\dfrac{AD}{DC}\)
\(\Rightarrow tgB.tgC=\dfrac{DC}{DH}.\dfrac{AD}{DC}=\dfrac{AD}{DH}=\dfrac{DH+AH}{DH}=1+k\)