Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF
a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)
Xét tứ giác BDEH có :
\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)
\(\widehat{EDB}=90^0\left(cmt\right)\)
=> tugiac BDEH noi tiep
b,
ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)
mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)
\(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì CH vuông với AB)
=> \(\widehat{ABC}=\widehat{ACH}\)
=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE
Xét tam giác ACE và tam giác ADC
\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)
góc CAD chung
=> tam giác ACE đồng dạng với tam giác ADC (g-g)
=> \(\frac{AC}{AD}=\frac{AE}{AC}\)
=> \(AC^2=AD.AE\)(1)
Tam giác ABC vuông tại C có AH là đường cao
=> BC2= BH.BA (hethucluong) (2)
(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)
mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)
=> \(AB^2=AE.AD+BH.BA\)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)