Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)
\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)
b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)
\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
a/ \(b^2-c^2=ab.cosC-ac.cosB\)
Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)
b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)
\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)
\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)
\(=\left(b^2-c^2\right).cosA\) (đpcm)
c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)
\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)
\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
\( \cot A = \dfrac{{\cos A}}{{\sin A}} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\dfrac{a}{{2R}} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{abc}}.R = \dfrac{{{b^2} + {c^2} - {a^2}}}{{4S}}\\ \cot A + \cos B + \cos C = \dfrac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{4S}} = \dfrac{{{b^2} + {c^2} + {a^2}}}{{4S}}\)