Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
a) xet tam giac ABC vuong tai A ta co
BC2=AB2+AC2 ( dinh ly pitago thuan) =32+42=9+16=25=> BC=5 cm
b) xet tam giac BHM vuong tai H va tam giac CKM vuong tai K taco:
BM=CM ( M la trung diem BC ) va goc BMH= goc CMK ( 2 goc doi dinh)
--> tam giac BHM= tam giac CKM ( ch-gn)
c) tu diem H den duong thang IM ta co
HM la duong xien, HI la duong vuong goc --> HI < HM (quan he duong xien duong vuong goc )
ma HM=MK ( tam giac BHM= tam giac CKM)
nen HI < MK
d)ta co : BK + KC> BC ( bat dang thuc trong tam giac BKC )
ma BH= CK ( tam giac BHM = tam giac CKM )
nen BK+BH > BC
xong roi
Ta có: BH vuông góc AM và CK vuông AM
=> BH // CK
Ta chứng minh được ΔBHM = ΔCKM (g-c-g)
=> BH = CK