K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:

          MA = MD (gt)

          \(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)

          MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)

\(\Rightarrow AB=DC\)(2 cạnh tương ứng)

     \(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

          MA = MD (gt)

         \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)

         MB = MC (gt)

\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)

\(\Rightarrow AC=DB\)(2 cạnh tương ứng)

Xét \(\Delta BAC\)và \(\Delta CDB\)có:

      AB = DC (cmt)

     AC = DB (cmt)

     BC là cạnh chung

\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)

c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!

5 tháng 2 2017

cần vẽ hình 0 bạn

5 tháng 2 2017

có bạn ơi

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

a: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: BA=DC; AC=DB

Xét ΔBAC và ΔCDB có 

BA=CD

AC=DB

BC chung

Do đó: ΔBAC=ΔCDB

c: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

7 tháng 1 2022

cảm ơn

3 tháng 12 2015

sorry nhe ! minh moi hoc lop 6

18 tháng 11 2017

Bạn vẽ hình đi

27 tháng 2 2020

a, xét tam giác MAB và tam giác MDC có : 

MB = MC do M là trđ của BC (gt)

MD = MA (GT)

góc BMA = góc DMC (Đối đỉnh)

=> tam giác MAB = tam giác MDC (c-g-c)

b, tam giác MAB = tam giác MDC (Câu a)

=> AB = DC (đn)

và góc BAM = góc MDC (đn) mà 2 góc này slt

=> AB // DC (Đl)

c, AB // DC (Câu  b)

=> góc ABC = góc BCD (slt)

xét tam giác ABC và tam giác DCB có : BC chung

AB = DC (câu b)

=> tam giác ABC = tam giác DCB (c-g-c)

=> góc BAC = góc CDB (đn)

a) Xét \Delta AMBΔAMB và \Delta DMCΔDMC có:

AB=AC(gt)

AM=MD(gt)

MB=MC(gt)

=>\Delta AMB=\Delta DMC\left(c.c.c\right)ΔAMBDMC(c.c.c)

b) Vì: \Delta AMB=\Delta DMC\left(cmt\right)ΔAMBDMC(cmt)

=> \widehat{MAB}=\widehat{MDC}MAB=MDC . Mà hai góc này ở vị trí sole trong

=>AB//DC

# Study well 'v' 

24 tháng 12 2020

a) Xét \(\Delta AMB\) và \(\Delta DMC\) , ta có: 

AB = AC (gt)

AM=MD (gt)

MD=MC (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.c.c\right)\) 

b) Vì: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB=\widehat{MDC}}\)

\(\Rightarrow AB\) //   \(DC\)

#Chúc bạn học tốt ^^

12 tháng 12 2015

Hình tự vẽ nhé!

Bài giải:

c)Theo câu a ta có: Tam giác MAB=MDC=>Góc BAM=CDM.

Xét Tam giác AEM và DFM có:

AE=DF(GT)

Góc BAM=CDM (CMT)

AM=DM(GT)

=> Tam giác AEM=Tam giác DFM (c.g.c) => Góc AME=DMF(*)( góc tương ứng).

Mặt khác MA và MD là 2 tia đối nhau nên ta có:Góc AMF+DMF= 180 độ.

Từ (*) => Góc AMF+AME=180 độ =>ME và MF là hai tia đối nhau (theo dhnb) => E;M;F thẳng hàng(đpcm)