Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ mà bạn cứ chứng minh theo trường hợp c.g.c thôi còn câu c thì bạn chứng minh BN và BM cùng bằng AC thôi
B C D K A N M
+ Xét ∆AMN và ∆CKN có:
AN = NC (gt)
\(\widehat{ANM}=\widehat{CNK}\)( đối đỉnh)
NM = NK (gt)
=>∆AMN = ∆CKN (c-g-c)
+ Cm được ∆ANK = ∆CNM
=> Góc NAK = góc NCM ( tương ứng)
=> AK // MC ( so le trong =)
Vì∆AMN = ∆CKN => MA = KC và góc AMN = góc CKN
+ XÉt∆MNB và ∆KND có :
MN = KN(gt)
\(\widehat{BMN}=\widehat{DKN}\)
MB = KD ( vì MB = MA; MA = KC; KC = KD)
=> ∆MNB = ∆KND (c-g-c) (1)
=> NB = ND
và góc MNB = góc KND mà M,N,K thẳng hàng
=> B,N,D thẳng hàng
Từ(1),(2) => N là trung điểm BD
Giải:
Xét ΔAMK,ΔBCKΔAMK,ΔBCK có:
AK=KB(=12AB)AK=KB(=12AB)
K1ˆ=K2ˆK1^=K2^ ( đối đỉnh )
MK=KC(gt)MK=KC(gt)
⇒ΔAMK=ΔBCK(c−g−c)⇒ΔAMK=ΔBCK(c−g−c)
⇒A1ˆ=Bˆ⇒A1^=B^ ( góc t/ứng )
Xét ΔANE,ΔCBEΔANE,ΔCBE có:
AE=EC(=12AC)AE=EC(=12AC)
E1ˆ=E2ˆE1^=E2^ ( đối đỉnh )
BE=EN(gt)BE=EN(gt)
⇒ΔANE=ΔCBE(c−g−c)⇒ΔANE=ΔCBE(c−g−c)
⇒A2ˆ=Cˆ⇒A2^=C^ ( góc t/ứng )
Ta có: Aˆ+Bˆ+Cˆ=180oA^+B^+C^=180o ( tổng 3 góc của ΔABCΔABC )
⇒Aˆ+A1ˆ+A2ˆ=180o⇒A^+A1^+A2^=180o
⇒MANˆ=180o⇒MAN^=180o
⇒M,A,N⇒M,A,N thẳng hàng (1)
Vì ΔAMK=ΔBCKΔAMK=ΔBCK
⇒MA=BC⇒MA=BC ( cạnh t/ứng )
Vì ΔANE=ΔCBEΔANE=ΔCBE
⇒AN=BC⇒AN=BC
⇒MA=AN(=BC)⇒MA=AN(=BC) (2)
Từ (1) và (2) ⇒A⇒A là trung điểm của MN
Vậy A là trung điểm của MN
a, - Xét \(\Delta AKC\) và \(\Delta BKN\) có :
\(\left\{{}\begin{matrix}AK=KB\left(gt\right)\\\widehat{AKC}=\widehat{BKN}\left(>< \right)\\CK=NK\left(gt\right)\end{matrix}\right.\)
=> \(\Delta AKC\) = \(\Delta BKN\) ( c - g - c )
b, - Xét \(\Delta BDM\) và \(\Delta CDA\) có :
\(\left\{{}\begin{matrix}BD=DC\left(gt\right)\\\widehat{BDM}=\widehat{CDA}\left(>< \right)\\AD=DM\left(gt\right)\end{matrix}\right.\)
=> \(\Delta BDM\) = \(\Delta CDA\) ( c - g - c )
cảm ơn nhá mik xin lỗi mik ko bt tick ở đâu