Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
A B C H K E I D
a.Xét tam giác ABH vuông tại H và góc B = 0độ nên góc BAH = 30độ
Ta có ; góc BAC - góc BAH = góc HAC
\(\Rightarrow\)góc HAC = 90độ - 30độ = 60độ
Ta lại có ; AK là tia pg góc HAC nên
góc HAK = góc KAC = \(\frac{\widehat{HAC}}{2}=\frac{60^0}{2}=30^0\)
Suy ra ; góc HAK = góc BAH
Xét hai tam giác vuông ABH và tam giác vuôngAKH có
góc AHB = góc AHK = 90độ
cạnh AH chung
góc BAH = góc HAK [ theo chứng minh trên ]
Do đó ; tam giác ABH = tam giác AKH [ g.c.g ]
\(\Rightarrow AB=AK\Rightarrow\)tam giác ABK cân [ 1 ]
Vì KE // AC nên góc BEK = góc BAC
mà bài cho góc BAC = 90 độ
\(\Rightarrow\)góc BEK = 90độ
\(\Rightarrow\)KE vuông góc với AB
Ta có
AH và KE là đường cao của tam giác ABK
mà I là giao điểm của AH và KE
Suy ra
I là trực tâm của tam giác ABK
\(\Rightarrow\)BI vuông góc với AK và tam giác ABK cân [ theo 1 ]
Ta có định nghĩa sau
Trong 1 tam giác cân đường cao vừa là trung trực, vừa là trung tuyến và là phân giác
Suy ra ; BI là tia phân giác góc ABK
phần b mk chưa nghĩ ra nhé
Chúc bạn học tốt
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
a, trên tia đối của tia MA lấy O sao cho MO=MA
=> t. giác BMO=t.giác CMA(c.g.c)
=> BO=CA mà CA=AE => BO=AE(*) ; \(\widehat{MAC}\)=\(\widehat{O}\)
Ta có: \(\widehat{ABO}\)+ \(\widehat{BAO}\)+ \(\widehat{O}\)= 180 độ
=> \(\widehat{ABO}\)+ \(\widehat{BAO}\)+\(\widehat{MAC}\)=180 độ
=> \(\widehat{ABO}\)+\(\widehat{A}\)=180 độ
do \(\widehat{DAE}\)+\(\widehat{A}\)=180 độ
=> \(\widehat{ABO}\)=\(\widehat{DAE}\)(**)
xét t.giác ABO và t.giác DAE có:
BO=AE
\(\widehat{ABO}\)=\(\widehat{DAE}\)
AB=AE(gt)
=> t.giác ABO=t.giác DAE(c.g.c)
=> \(\widehat{BAO}\)=\(\widehat{ADE}\)mà \(\widehat{BAO}\)+\(\widehat{DAI}\)=90 độ => \(\widehat{ADE}\)+\(\widehat{DAI}\)=90 độ
=> \(\widehat{DIA}\)=90 độ=> AI\(\perp\)DE
b)từ D kẻ DP\(\perp\)AH; từ E kẻ EQ\(\perp\)AH
ta có: t.giác AHB=t.giác DPA(CH-GN)=> DP=AH(1)
t.giác AEQ=t.giác CAH(CH-GN)=> QE=AH(2)
từ (1) và (2) suy ra DP=QE
xét 2 tam giác vuông PKD và QKE có:
DP=QE(cmt)
\(\widehat{PDK}\)=\(\widehat{KEQ}\)(vì so le)
=> t.giác PKD=t.giác QKE(cạnh góc vuông-góc nhọn kề)
=> KD=KE(2 cạnh tương ứng)
A B C D E H M K I O P Q
Hạo Nam Hạo Nam