K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

3 tháng 2 2017

sao khong ai giup vay 

19 tháng 4 2015

 1,a, cm: tam giác BEC và tg BDC(c.g.c0

b, cm : tg ABE= tg ACD(c,g.c)

c, cm: BK=KC ( cm: tg BKD= tg CED)

25 tháng 3 2017

CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM

a, Tính BC

b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC

c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC

9 tháng 7 2020

A B C H K E I D

a.Xét tam giác ABH vuông tại H và góc B = 0độ nên góc BAH = 30độ

Ta có ; góc BAC - góc BAH = góc HAC 

\(\Rightarrow\)góc HAC = 90độ - 30độ = 60độ

Ta lại có ; AK là tia pg góc HAC nên 

góc HAK = góc KAC = \(\frac{\widehat{HAC}}{2}=\frac{60^0}{2}=30^0\)

Suy ra ; góc HAK = góc BAH 

Xét hai tam giác vuông ABH và tam giác vuôngAKH có

           góc AHB = góc AHK = 90độ

           cạnh AH chung

           góc BAH = góc HAK [ theo chứng minh trên ]

Do đó ; tam giác ABH = tam giác AKH [ g.c.g ]

\(\Rightarrow AB=AK\Rightarrow\)tam giác ABK cân [ 1 ]

 Vì KE // AC nên góc BEK = góc BAC 

mà bài cho góc BAC = 90 độ

\(\Rightarrow\)góc BEK = 90độ

\(\Rightarrow\)KE vuông góc với AB

Ta có

AH và KE là đường cao của tam giác ABK 

mà I là giao điểm của AH và KE 

Suy ra

I là trực tâm của tam giác ABK

\(\Rightarrow\)BI vuông góc với AK và tam giác ABK cân [ theo 1 ]

Ta có định nghĩa sau

Trong 1 tam giác cân đường cao vừa là trung trực, vừa là trung tuyến và là phân giác 

Suy ra ; BI là tia phân giác góc ABK

phần b mk chưa nghĩ ra nhé 

Chúc bạn học tốt

1 tháng 5 2018

không giúp dc dù làm dc!

1 tháng 5 2018

a​) xét ABE vuông tại E và KBE vuông tại E​

​có góc ABE =KBE(gt)​

BE chug​

​=> ABE=KBE ( ch -gn)​

​=> AB=KB( cạnh t/ư)

​=> ABK cân tại B

b) xét ABD và KBD

có AB=KB​

​ ABD=KBD

​BD chung

=> ABD = KBD( cgc)​

=> BAD = BKD​

​mà BAD = 90 độ

​=> BKD =90 độ

​hay DK vuông góc BC tại K

a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Vậy: BC=8cm

1 tháng 5 2019

a, trên tia đối của tia MA lấy O sao cho MO=MA

=> t. giác BMO=t.giác CMA(c.g.c)

=> BO=CA mà CA=AE => BO=AE(*) ; \(\widehat{MAC}\)=\(\widehat{O}\)

Ta có: \(\widehat{ABO}\)\(\widehat{BAO}\)\(\widehat{O}\)= 180 độ

=> \(\widehat{ABO}\)\(\widehat{BAO}\)+\(\widehat{MAC}\)=180 độ

=> \(\widehat{ABO}\)+\(\widehat{A}\)=180 độ

do \(\widehat{DAE}\)+\(\widehat{A}\)=180 độ 

=> \(\widehat{ABO}\)=\(\widehat{DAE}\)(**)

xét t.giác ABO và t.giác DAE có:

        BO=AE

        \(\widehat{ABO}\)=\(\widehat{DAE}\)

       AB=AE(gt)

=> t.giác ABO=t.giác DAE(c.g.c)

=> \(\widehat{BAO}\)=\(\widehat{ADE}\)mà \(\widehat{BAO}\)+\(\widehat{DAI}\)=90 độ => \(\widehat{ADE}\)+\(\widehat{DAI}\)=90 độ 

=> \(\widehat{DIA}\)=90 độ=> AI\(\perp\)DE

b)từ D kẻ DP\(\perp\)AH; từ E kẻ EQ\(\perp\)AH

ta có: t.giác AHB=t.giác DPA(CH-GN)=> DP=AH(1)

t.giác AEQ=t.giác CAH(CH-GN)=> QE=AH(2)

từ (1) và (2) suy ra DP=QE

xét 2 tam giác vuông PKD và QKE có: 

              DP=QE(cmt)

              \(\widehat{PDK}\)=\(\widehat{KEQ}\)(vì so le)

=> t.giác PKD=t.giác QKE(cạnh góc vuông-góc nhọn kề)

=> KD=KE(2 cạnh tương ứng)

           

A B C D E H M K I O P Q

10 tháng 3 2021

Tại sao góc DEA + góc BAC lại bằng 180 độ ạ???