K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Hình như đề sai???

2 tháng 5 2018

a. Xét tam giác BMC và tam giác DMA có

MB=MD(gt) BMC=DMA(đối đỉnh)

MA=MC(vì M là trung điềm AC)

Vậy tam giác BMC = tam giác DMA(c-g-c)

=>MBC=MDA( 2 góc tương ứng)

=> AD // BC

b. Xét tam giác AMB và tam giác CMD có

MA=MC(vì M là trung điềm AC)

AMB=CMD( đối đỉnh)

MB=MD(gt)

Vậy tam giác AMB = tam giác CMD(c-g-c)

=> AB=CD(2 cạnh tương ứng)

mà AB=AC(vì tam giác ABC cân tại A)

=> AC=CD

=> tam giác ACD cân tại C

c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)

=> EM là đường trung tuyến thứ nhất (1)

mặt khác AC=CE(gt)

MC=1/2 AC (vì M là trung điềm AC)

=> MC= 1/2 CE 

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC


Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE


Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK


Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

29 tháng 11 2016

A B M N C D E

a) xét tam giác ADM và tam giac BDC ta có

MD=DC (gt)

AD=DB(D là trung điểm AB)

góc ADM=góc BDC (2 góc doi đỉnh)

-> tam giác ADM= tam giác BDC (c-g-c)

b) ta có

góc MAD = góc DBC (  tam giác ADM= tam giác BDC )

mà 2 góc nẳm o vị trí soletrong

nên AM//BC

c) 

 xét tam giác AEN và tam giac BEC ta có

EN=EB (gt)

AE=EC(E là trung điểm AC)

góc AEN=góc BEC (2 góc doi đỉnh)

-> tam giác ANE = tam giác CBE (c-g-c)

-> góc NAE = góc BCE (2 góc tương ứng

mà 2 góc nằm o vi trí sole trong

nên AN//BC

ta có 

AN//BC (cmt)

AM//BC (cmb)

-> AM trùng AN

-> A,M,N thẳng hàng

29 tháng 11 2016

*-Bạn tự vẽ hình nhé!*

CM:a) Xét tam giác ADM và tam giác BDC có:

           AD=BD(D là trung điểm của AB)

           Góc ADM=góc BDC(đối đỉnh)

           DM=DC(gt)

   => tgiac ADM = tgiac BDC (c.g.c)

b) =>góc MAD= góc DBC (hai góc tương ứng)

   Mà 2 góc này ở vị trí so le trong

 => AM song song BC                                                                 (1)

c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)

=> góc NAE= góc CEB(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> BC song song AN                                                             (2)

Từ (1) và (2)=> MA song song BC; AN song song BC

=> A,M,N thẳng hàng (ơ-clit)

*- cho mk nha!!!-Mơn b *:)*

                    

15 tháng 1 2019

A B C M E D

CM: a) Xét t/giác ABM và t/giác ACM

có AB = AC (gt)

  BM = MC (gt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

b) Ta có: t/giác ABM = t/giác ACM (cmt)

=> góc AMB = góc AMC (hai góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)

=> \(2\widehat{AMB}=180^0\)

=> \(\widehat{AMB}=180^0:2=90^0\)

=> AM \(\perp\)BC ( Đpcm)

c) Xét t/giác AMD và t/giác CED

có  AD = CD (gt)

 góc ADM = góc EDC (đối đỉnh)

DM = DE (gt)

=> t/giác AMD = t/giác CED (c.g.c)

=> góc MAD = góc DCE (hai góc tương ứng)

Mà góc MAD và góc DCE ở vị trí so le trong

=> AM // EC (Đpcm)

d) Ta có : t/giác MAD = t/giác DCE (cmt)

=> AM = CE (hai cạnh tương ứng)

Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)

=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)

Xét t/giác AMC và t/giác MCE

có AM = CE (cmt)

 góc AMC = góc MCE (cmt)

MC : chung

=> t/giác AMC = t/giác MCE (c.g.c)

=> ME = AC (hai cạnh tương ứng)

mà MD = DE = ME/2

hay AC/2 = MD (Đpcm)

a: Xét ΔADE và ΔCDB có 

DE=DB

\(\widehat{ADE}=\widehat{CDB}\)

DA=DC

Do đó: ΔADE=ΔCDB

Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

Suy ra: AE//BC

b: ta có: ΔENB vuông tại N

mà ND là đường trung tuyến

nên ND=DB=DE=BE/2

30 tháng 12 2017

Bạn tự vẽ hình nhé.

a) Xét tam giác AMB và tam giác DMC có: MB = MC (gt)   ;   góc AMB = góc DMC (2 góc đối đỉnh)    ; AM = MD (gt)

=> tam giác AMB = tam giác DMC (c.g.c)        (đpcm)

b) Vì AH vuông góc BC tại H (gt) (*) nên góc AHM = góc EHM = 90o (định nghĩa).

Xét tam giác HMA và tam giác HME có: chung HM     ;      góc AHM = góc EHM (cmt)       ;      HA = HE (gt)

=>  tam giác HMA = tam giác HME (c.g.c)      (1)

=> MA = ME (2 cạnh tương ứng) mà MA = MD (gt) nên ME = MD.

c) Vì ME = MD nên tam giác MDE cân tại M. => góc MED = góc MDE (t/c)       (2)

Từ (1) => góc MAH = góc MEH (3)

Từ (2) và (3) => góc DEA = góc DAE + góc ADE => góc DEA = 90

=> DE vuông góc AH.  (**)

Từ (*) và (**) => DE // BC