K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

DỄ THÔI phần a xét tứ giác AEDF có AF//DE(vì DE//AB gt)

                                                       AE//DF(vì DE//AB gt)

=> AEDF là hbh 

phần b thì bt này thiếu dk tam giác ABC cân nữa mới lm đc

 

17 tháng 3 2020

a. Vì AE//DF và DE//AF => AEDF là hình bình hành

Vậy AEDF là hình bình hành

b.ADEF là hình thoi <=> AD là phân giác góc BAC

  ADEF là hình vuông <=> ​​AEDF là hình thoi <=> AD là phân giác góc BAC

                                          và A=90độ

  Vậy...

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

NM
21 tháng 10 2021

ta có:

undefined

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat {{\rm{BAC}}} = 90^\circ \) và \(AB \bot AC\)

Mà \(DE\) // \(AB\) ; \(DF\) // \(AC\)

Suy ra \(DE \bot AC;\;DF \bot AB\)

Suy ra \(\widehat {DEA} = \widehat {DFA} = 90^\circ \)

Tứ giác \(AEDF\) có \(\widehat {BAC} = \widehat {DEA} = \widehat {DFA} = 90^\circ \) nên là hình chữ nhật

b) Vì \(AEDF\) là hình chữ nhật (cmt)

Suy ra \(AE = DF\); \(AF = DE\); \(AF\) // \(DE\); \(AE\) // \(DF\)

Vì \(DE \bot AC;\;DF \bot AB\) (cmt)

Suy ra \(\widehat {DEC} = \widehat {BFD} = 90^\circ \)

Xét \(\Delta BFD\) và \(\Delta DEC\) ta có:

\(\widehat {{\rm{BFD}}} = \widehat {{\rm{DEC}}} = 90^\circ \) (cmt)

\(BD = DC\) (gt)

\(\widehat {{\rm{FBD}}} = \widehat {{\rm{EDC}}}\) (do \(DE\) // \(BF\) )

Suy ra \(\Delta BFD = \Delta DEC\) (ch – gn)

Suy ra \(BF = DE\); \(DF = EC\) (hai cạnh tương tứng)

Xét tứ giác \(BFED\) ta có:

\(BF\) // \(DE\) (do \(AB\) // \(DE\))

\(BF = DE\) (cmt)

Suy ra \(BFED\) là hình bình hành

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

A E F C D B

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu  ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).