K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

a)Tam giác MAI có MA<MI+IA(quan hệ 3 cạnh trong tam giác)

Nên:  có:   MA<MI+IA

          MA+MB<MI+IA+MB

          MA+MB<IA+IB

Vậy          MA+MB<IA+IB (1)

b)Tam giác CBI có IB<IC+CB (quan hệ 3 cạnh trong tam giác)

Nên                     IB<IC+CB

             IB+IA<IC+CB+IA

            IB+IA<CA+CB

Vậy IB+IA<CA+CB (2)

c) Từ (1) và (2) suy ra

MA+MB<CA+CB

ze:13.0pt; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; color:#C00000;} .MsoPapDefault {mso-style-type:export-only; margin-bottom:10.0pt; line-height:115%;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.0in 1.0in 1.0in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} /* List Definitions */ @list l0 {mso-list-id:1148129261; mso-list-type:hybrid; mso-list-template-ids:-1807209504 -1162451228 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;} @list l0:level1 {mso-level-start-at:2; mso-level-number-format:bullet; mso-level-text:; mso-level-tab-stop:none; mso-level-number-position:left; text-indent:-.25in; font-family:Wingdings; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";} ol {margin-bottom:0in;} ul {margin-bottom:0in;} -->

a)Xét tam giác NMI và Tam giác NHI có

MNI=INH(gt)

NM=NH

NI cạnh chung

Nên tgiac NMI=Tgiac NHI(c-g-c)

b) Xét tgiac MIF và tgiac HIP có

IM=IH(vì tgiac NMI=tgiac NHI)

MIF=HIP(đối đỉnh)

Nên tgiac MIF=Tgiac HIP (ch-gn)

Do đó IF=IP( 2 cạnh tương ứng)

Vậy Tam giác IFP cân tại I

c) Tam giác IHP: có IHP=90 nên IP>IH(tính chất cạnh đối diện góc lớn nhất)

Mà  IP=IF => IF>IH

Vậy IF>IH

A B M I C

30 tháng 3 2016

câu dưới mình bị nhầm á thông cảm hen

25 tháng 12 2017

Mình nhờ các bạn giải giúp nhé, mình cần gấp tối nay

25 tháng 12 2017

Bài này dễ mà bạn ơi!

Xét tam giác ABC và tam giác CDE,có:

AC=CD(gt)

CB=CE(gt)

góc ACB=góc ECD(đối đỉnh)

=>tam giác ABC=tam giác DEC(c.g.c)

Do tam giác ABC=tam giác CDE(cmt)

=>AB=ED  (1)

M nằm giữa AB ,từ M ta kẻ MC vuông góc với AB tại M.Kéo dài MC cắt DE tại N.Thì MC vuông góc với DE tại N.

Nên góc AMC=góc BMC=90°(góc kề bù)

     góc CND=góc CNE=90°(góc kề bù)

=>AB//DE(t/c từ vuông góc tới song song)  (2)

Như vậy, ta sẽ chứng minh được:

tam giác vuôngAMC=tam giác vuông DNC.(g.c.g)

=> AM=DN (3)

Mà AB//=DE( theo 1,2)

Hay BM+AM=DN+NE (4)

Từ (3),(4) suy ra: BM=NE (đpcm)

30 tháng 3 2015

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

29 tháng 3 2017

M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

19 tháng 4 2017

a) M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

27 tháng 3 2016

bạn này tự hỏi rồi tự trả lời để người khác dung cho a

27 tháng 3 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hàng

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hàng nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

26 tháng 3 2018

a+b, Áp dụng bất đẳng thức tam giác, ta được: AM < IM + IA (trong tam giác MAI ) và IB < IC + CB ( trong tam giác BMA)

c, từ câu a và b => câu c được nhá (cái sau ý)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét tam giác ABC có: D nằm trong tam giác và \(DA \bot BC;DB \bot CA\).

Suy ra: D là giao điểm của hai đường cao của tam giác ABC hay D là trực tâm của tam giác ABC.

Vậy \(DC \bot AB\).