K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC

Xét tứ giác BCDE có ED//BC

nên BCDE là hình thang

mà BD=CE

nên BCDE là hình thang cân

11 tháng 11 2021

a: Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

28 tháng 10 2015

a) Áp dụng tính chất đường trung bình của tam giác sẽ chứng minh được ADEF là hbh, MNPQ là hình thoi.

b) và c) chứng minh tương tự

 

12 tháng 12 2016

a/ Do E,D,F lần lượt là trung điểm của AB,AC,BC (gt)
=> ED,EF,FE là các đường trung bình tam giác ABC.
=> ED // và = BC/2; EF // và = AB/2 và DF // và = AC/2.
Xét tứ giác DECB có ED // BC => DECB là hình thang. Mặt khác DECB lại có góc B = góc C => DECB là hình thang cân.

b/ Do EF // AB => EF // BD. DE // BC => DE // BF, xét tứ giác BDEF có EF // BD và DE // BF (C/m trên) => BDEF là hình bình hành

c/ Ta có: EF = AB/2; DF = AC/2 (c/m ở trên) AD = AB/2 và AE = AC/2 (gt). Mà AB = AC (do tam giác ABC cân tại A)
Từ những điều đó

=> EF = DF = AD = AE => ADFE là hình thoi.
 

21 tháng 11 2021

EF//AB????

14 tháng 11 2021

\(\left\{{}\begin{matrix}\text{E là trung điểm AB}\\\text{D là trung điểm AC}\end{matrix}\right.\)

mà AB=AC ( tam giác ABC cân tại A)

⇒ AE=BE=AD=DC

\(\left\{{}\begin{matrix}\text{D là trung điểm AC}\\\text{F là trung điểm BC}\end{matrix}\right.\)

⇒ DF là đường trung bình tam giác ABC đáy AB

⇒ DF//AB mà DF=AE

⇒ AEFD là hình bình hành (1)

Vì BEDF là hình bình hành 

⇒ BE=DF mà BE=AD

⇒ AD=DF (2)

Từ (1) và (2) 

⇒ ADFE là hình thoi

14 tháng 11 2021

Vì BEDF là hình bình hành (gt)

=> BE // DF , BE = DF

mà BE = AE (E là trung điểm AB)

=> AE = DF

Xét tứ giác ADFE có : AE = FD (cmt)

                                    AE // FD (BE // FD mà E ∈ AB)

=> Tứ giác ADFE là hình bình hành

Vì tam giác ABC cân tại A có F là trung điểm BC

=> AF là đường cao của tam giác ABC

=> AF ⊥ BC (1)

Vì tứ giác BCDE là hình thang (gt)

=> BC // DE (2)

Từ (1) và (2) => AF ⊥ ED (từ vuông góc đến song song) 

Xét hình bình hành ADFE có : AF ⊥ ED mà AF và ED là 2 đường chéo

=> hình bình hành ADFE là hình thoi (DHNB)

 

19 tháng 8 2019

a,Tam giác ABC cân tại A nên AB=AC

E là trung điểm của AB nên EB=1/2*AB

D là trung điểm của AC nên DC=1/2*AC

nên EB=DC và ED là đường trung bình của tam giác ABC

tức ED//DC 

Xét tứ giác BEDC có : ED//BC

                                  BE=DC

suy ra tứ giác BCDE là htc

b, Ta thấy F là trung điểm của BC

               D là trung điểm của AC

nên FD là đường trung bình của tam giác ABC

hay FD//AB mà ED//BC(cmt)

nên tứ giác BEDF là hbh

c,Chứng minh tương tự câu b ta được tứ giác AEFD là hbh

mà FD là đường trung bình của tam giác ABC nên FD=AE=EB

từ đây suy ra tứ giác AEFD là hình thoi

#CBHT

30 tháng 5 2017

A B C D F E

a) Tứ giác ADEF có bốn cạnh bằng nhau nên là hình thoi.

b) Hình thoi ADEF là hình vuông \(\Leftrightarrow\widehat{A}=90^o\Leftrightarrow\Delta ABC\) vuông cân tại A.