Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
Kẻ \(CG\perp EF\), \(BN\perp EF\)( \(G,N\in EF\))
Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;
BM = CM( M là trung điểm của BC)
\(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)
=> \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)
=> BN = CG.
Gọi P là giao của đường phân giác góc BAC và EF.
Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.
=> \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).
=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)
Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:
BN = CG( chứng minh trên)
\(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)
=> \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)
xét ΔABC và ΔDBN ta có
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BDN}=90^o\)
=>ΔABC∼ΔDBN(g.g)
=>\(\dfrac{BA}{BD}=\dfrac{BC}{BN}\)
=>\(BA.BN=BD.BC\)