Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác ABC và tam giác HBA, có:
^A=^H = 90 độ
^B: chung
Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BC.HB\)
b.Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC=\sqrt{15^2+20^2}=25cm\)
Ta có:\(AB^2=BC.HB\)
\(\Leftrightarrow15^2=25HB\)
\(\Leftrightarrow HB=9cm\)
\(\Rightarrow HC=25-9=16cm\)
c. Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)
\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)
c:Xét ΔABD và ΔNCH có
góc ABD=góc NCH
góc D=góc NHC
=>ΔABD đồng dạng với ΔNCH
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2
a: Xét ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(AD=\dfrac{2\cdot15\cdot20}{15+20}\cdot cos45=\dfrac{60}{7}\sqrt{2}\)(cm)
AH=15*20/25=12(cm)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{12}{7}\left(cm\right)\)
c: ΔABI vuông tại A có AK là đường cao
nên BK*BI=BA^2=BH*BC
=>BK/BC=BH/BI
=>ΔBKH đồng dạng với ΔBCI