K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

Hình bạn tự vẽ nha

a. ADĐL pytago cho tam giác vuông ABC, ta có:

BC2 = AB2 + AC2

BC = \(\sqrt{3^2+4^2}\)

BC = 5 (cm)

Vì tam giác ABC vuông tại A, ta có:

SinB = \(\frac{3}{5}\)

\(\Rightarrow\) \(\widehat{B}=\) 36052'

SinC = \(\frac{4}{5}\)

\(\Rightarrow\) \(\widehat{C}\) = 5307'

APHQ là hình chữ nhật. Vì \(\widehat{A}=\widehat{P}=\widehat{Q}=90^0\)

23 tháng 10 2021

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)

Do đó: AEHF là hình chữ nhật

23 tháng 10 2021

Mình biết cái này rồi, tính diện tích á

16 tháng 10 2020

XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100 

=>BC=10.

b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :

AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .

=> 6K=DC ; 8K=BD .

CÓ  BD+DC =BC=10

<=>6K+8K=10

<=>14K=10

<=>K=5/7 .

=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .

C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.

CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông

20 tháng 7 2018

A B C D E F

a)  Áp dụng đinh lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

Để tính góc B bn tính tỉ số lượng giác của 1 trong 2 góc sau đó tra bảng là ra đc số đo góc đó và tính đc góc còn lại

(do mk k biết dùng bảng lượng giác nên k giúp đc phần này)

b)  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay  \(\frac{BD}{6}=\frac{DC}{8}=\frac{BD+DC}{6+8}=\frac{10}{14}=\frac{5}{7}\)

suy ra:     \(\frac{BD}{6}=\frac{5}{7}\)\(\Rightarrow\)\(BD=\frac{30}{7}\)

               \(\frac{DC}{8}=\frac{5}{7}\)\(\Rightarrow\)\(DC=\frac{40}{7}\)

c)  Tứ giác  AEDF  có:  \(\widehat{A}=\widehat{F}=\widehat{E}=90^0\)

\(\Rightarrow\)Tứ giác  \(AEDF\)là hình chữ nhật

a: BC=5cm

Xét ΔABC vuông tại A có 

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

b: Xét ΔABC có BK là đường phân giác

nên \(\dfrac{AK}{AB}=\dfrac{KC}{BC}\)

hay \(\dfrac{AK}{3}=\dfrac{KC}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AK}{3}=\dfrac{KC}{5}=\dfrac{AK+KC}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AK=1,5cm; KC=2,5cm

 

30 tháng 10 2021

c: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác

nên AEDF là hình vuông