K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

A B C H D E

a) Xét \(\Delta AHB\)\(\Delta AHD\):

\(\hept{\begin{cases}AH:chung\\\widehat{AHB}=\widehat{AHD}=90^o\\HB=HD\left(GT\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AHD\left(c.g.c\right)\)

\(\Rightarrow AB=AD\)

\(\Rightarrow\Delta ABD\) cân tại A

\(\Rightarrow\widehat{ABD}=\widehat{ADB}=90^0-30^0=60^0\)

\(\Rightarrow\widehat{BAD}=180^0-60^0\cdot2=60^0\)

\(\Rightarrow\Delta ABD\) đều.

b, Ta có:\(\Rightarrow\Delta AHB=\Delta AHD\left(c.g.c\right)\)(bỏ dấu => nha)

\(\Rightarrow\widehat{BAH}=\widehat{DAH}=\frac{60^0}{2}=30^0\)(1)

 \(\widehat{BAD}=60^0\)(phần a)

\(\Rightarrow\widehat{DAC}=90^0-60^0=30^0\)

\(\Rightarrow\widehat{ACE}=180^0-90^0-30^0=60^0\)

\(\Rightarrow\widehat{HCE}=60^0-30^0=30^0\)(2)

Từ 1 và 2 \(\Rightarrow\widehat{DAH}=\widehat{HCE}\)

Ta có: \(\widehat{HAC}=30^0+30^0=60^0=\widehat{ACE}\)

Xét 2 tam giác vuông \(\Delta HAC\)\(\Delta ECA\)

\(\hept{\begin{cases}\widehat{HAC}=\widehat{ECA}\left(cmt\right)\\AC:chung\end{cases}}\)

\(\Rightarrow\Delta HAC=\Delta ECA\left(ch+gn\right)\)

=> AH=CE

Xét 2 tam giác vuông HAD và ECD:

\(\hept{\begin{cases}\widehat{DAH}=\widehat{HCE}\left(cmt\right)\\AH=CE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta HAD=\Delta ECD\left(cgv+gn\right)\)

=>HD=DE

=>Tam giác HDE cân tại H

\(\Rightarrow\widehat{DHE}=\widehat{DEH}=\frac{180^0-\widehat{HDE}}{2}=\frac{180^0-\widehat{DEC}-\widehat{DCE}}{2}=\frac{60^0}{2}=30^0\)

\(\Rightarrow\widehat{DAC}=\widehat{DEH}=30^0\)

Mà chúng ở vị trí so le trong

=> HE//AC

5 tháng 2 2017

cần vẽ hình 0 bạn

a) trong tam giác ABC có: Â + B + C = 1800 (đ/lý)

                              =>   900 + B + 300 = 1800

                             => B = 1800 - (900 + 300)

                                 B = 600       (1)

xét 2 tam giác vuông ABH và ADH có:

AH chung

HD = HB (gt)

=> tam giác ABH = tam giác ADH (ch-cgv)

=> AB = AD (cạnh tương ứng)

=> tam giác ABD cân tại A   (2)

từ (1) và (2) => tam giác ABD là tam giác đều

17 tháng 4 2016

b) 

ta có C=30 độ suy ra AB=1/2CB

theo câu a, ta có:tam giác ABD đều suy ra AD=AB=CD

xét 2 tam giác vuông DCE và tam giác DAH có:

DC=DA(cmt)

CDE=ADH(2 góc đđ)

suy ra tam giác DCE=DAH(CH-GN)

suy ra AH=CE

13 tháng 2 2018

a) xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, gocs C=30 độ
=> góc B=90 độ = 90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều

b) tam giác ABD đều => góc BAD=60 độ

vậy ta có góc BAD+góc DAC=90

hay 60+góc DAC=90

góc DAC=30 độ

Xét tam giác ADC có góc  DAC=góc DCA=30

Vậy tam giác ADC cân tại D=> AD=DC

Xét tam giác ADH và tam giác CDE có

góc DEC=góc DHA=90

AD=CD(cmt)

góc CDE=góc ADH(đối đỉnh)

=> tam giác ADH=tam giác CDE(ch-gc)

=> AH= CE(2 cạnh tương ứng)

a, xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, godc C=30 độ
=> góc B=90 độ-gócc
=90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0
11 tháng 5 2016

a,xét tam giác AHB và tam giác AHD

có góc bằng nhau 

canh bằng nhau\suy ra hai tam giácbằng nhau

suy ra ^bah=^DAH

mà BAH=30 độ(ABH=60 độ xét tam giác AHB vuông suy ra BAH=30 độ)

suy ra ^BAD=60 độ(1)

lại có BA=AD

suy ra tam giấcBDA cân (2) từ 1 vf 2  suy ra ABD dều

b,TA có ^DAC+^DAB=9o độ

suy ra DAC=30 độ 

suy ra tam giác DAC cân

suy ra AD = DC

xét tam giác ADH và tam giác CDE

có AD=DC

ADH=CDE 

suy ra 2 tam giác bằng nhau

suy ra AH = CE

tích đung cho mik nha 

cảm ơn nha

còn bài nào thì cứ đăng lên

21 tháng 7 2016

(hình bạn tự kẻ nhé)

a) \(\Delta\)ABC : BAC^ = 90o ;BCA^ = 30o => ABC^ = 180o - BAC^ -BCA^ = 180o - 90o - 30o = 60o

\(\Delta\)BHA : BHA^ = 90o ; HBA^ = 60o => BAH^ = 180o - BHA^ - HBA^ = 180o - 90o - 60o = 30o

Xét \(\Delta\)BHA và \(\Delta\)DHA :

BHA^ = DHB^ = 90o

HA chung

HB = HD 

=> \(\Delta\)BHA = \(\Delta\)DHA (2 cạnh góc vuông)

=> BAH^ = DAH^ = 30o (2 cạnh  tương ứng)

Ta có: BAH^ + DAH^ = BAD^  <=> 30o + 30o = BAD^ => 60o = BAD^

\(\Delta\)ABD có: ABD^ = 60o; BAD^ = 60o 

Và ABD^ + BAD^ + BDA^ = 180o

     BDA^ = 180o - ABD^ - BAD^ = 180o - 60o - 60o = 60o

=> \(\Delta\)ABD đều

b) Ta có: \(\Delta\)BHA = \(\Delta\)DHA (cmt)

=> AH = CE (2 cạnh tương ứng)

c) Ta có: HDE^ = ADC^ (đđ)

và HDA^ = EDC^ = 60o (đđ)

mà HDE^ + ADC^ + HDA^ + EDC^ = 360o

2 * HDE^ + 2* HDA^ = 360o

2* HDE^  + 2* 60o = 360o

2* HDE^ = 360o - 120o

2* HDE^ = 240o

HDE^ = 120o

\(\Delta\)BHA = \(\Delta\)DHA (cmt)

=> DH = DE (2 cạnh tương ứng)

=> \(\Delta\)HDE cân tại D

=> DHE^ = DEH^ 

\(\Delta\)HDE có: DHE^ + DEH^ + HDE^ = 180o

                       2* DHE^ = 180o - HDE^ = 180o - 120o = 60o

                          DHE^ = 30o

=> DHE^ = DCA^ = 30o

Mà DHE^ sole trong với DCA^ 

=> EH // AC

6 tháng 6 2021

a) ΔABDΔABD có đường cao AH đồng thời là đường trung tuyến nên ABDABD cân.

Có ˆB=600B^=600 (vì ˆC=300C^=300 (gt)).

Do đó ΔABDΔABD đều.

b) ΔABDΔABD đều (cmt) ⇒ˆBAD=600⇒ˆCAD=ˆC=300.⇒BAD^=600⇒CAD^=C^=300.

Do đó ΔADCΔADC cân tại D ⇒DA=DC.⇒DA=DC.

Xét hai tam giác vuông AHD và CED có:

+) DA=DCDA=DC (cmt);

+) ˆD1=ˆD2D^1=D^2 (đđ);

Vậy ΔAHD=ΔCEDΔAHD=ΔCED (cạnh huyền-góc nhọn)

⇒AH=CE.⇒AH=CE.

c) ΔAHD=ΔCEDΔAHD=ΔCED(cmt) ⇒HD=ED⇒HD=ED (cạnh tương ứng).

Do đó ΔDHEΔDHE cân tại D.

Mặt khác ΔADCΔADC cân tại D, mà hai tam giác cân này chung đỉnh D

⇒ˆCHE=ˆACB=300.⇒CHE^=ACB^=300.

⇒⇒ EH // AC (cặp góc so le trong bằng nhau).