Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng HTL :
\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
a: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
CH=16(cm)
BC=25(cm)
AC=20(cm)
Bài giải:
Áp dụng định lí pytago vào tam giác ABC ta có:
BC²=AB²+AC²=6²+8² =36+64=100
=> BC=10cm áp dụng hệ thức về cạnh và góc vào tam giác vuông ABC ta có sinB=AC/BC=8/10=4/5 =>góc B=53'
~Học tốt~