K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A
mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)

\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)

mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)

nên \(\widehat{DAB}=\widehat{HAB}\)

=>AB là phân giác của góc DAH

 

26 tháng 3 2022

cứu mình với ạ

26 tháng 3 2022

Cậu tham khảo:

undefined

22 tháng 3 2022

giúp mình dc ko :<<<<

22 tháng 3 2022

Đợi mình chút

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:

$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$

$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$

$=1+\frac{AD}{BD}$

Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác

Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$

$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$

 Ta có đpcm.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined