K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEC vuông tại E và ΔAHB vuông tại H có 

\(\widehat{BAH}\) chung

Do đó: ΔAEC\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AB=AH\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(cmt)

nên \(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)

Xét ΔAEH và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)(cmt)

\(\widehat{EAH}\) chung

Do đó: ΔAEH\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AEH}=\widehat{ACB}\)(hai góc tương ứng)

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

9 tháng 4 2020

a) xét \(\Delta ADB\)zà \(\Delta AEC\)

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}=90^0\end{cases}}\)

\(=>\Delta ADB~\Delta AEC\left(g.g\right)\)

\(=>\frac{AD}{AE}=\frac{AB}{AC}=>AD.AC=AB.AE\left(dpcm\right)\)

\(taco\left(\frac{AD}{AE}=\frac{AB}{AC}=>\frac{AD}{AB}=\frac{AE}{AC}\right)\)

xét \(\Delta ADE\)zà \(\Delta ABCco\)

\(\hept{\begin{cases}\widehat{A}chung\\\frac{AD}{AB}=\frac{AE}{AC}\end{cases}=>\Delta ABE~\Delta ABC\left(c.g.c\right)}\)

=>\(\widehat{ADE}=\widehat{ABC}\left(dpcm\right)\)

9 tháng 4 2020

c) Xét tam giác AEC zà tam giác HDC óc

góc AEC= góc HDC =90 độ

góc HCE chung

=> tam giác AEC~ tam giác HDC 

=>\(\frac{AC}{HC}=\frac{EC}{DC}=>AC.DC=EC.HC\left(1\right)\)

xét tam giác BEC zà tam giác HEA có

góc BEC= góc AEH= 90 độ

góc BCE = góc  EAH ( cùng phụ zới góc EBC )

=> tam giác BEC ~ tam giác HEA (g.g)

=>\(\frac{BE}{HE}=\frac{EC}{EA}=>BE.EA=EC.HE\left(2\right)\)

từ 1 zà 2 suy ra

\(BE.BA+CD.CA=BH.BD+CH.CE\)

kẻ AH zuông goc zới BC cắt BC tại F

Tự CM \(\hept{\begin{cases}\Delta CFH~\Delta CEB\\\Delta BFH~\Delta BDC\end{cases}=>\hept{\begin{cases}CF.CB=CH.CE\\BF.BC=BH.BD\end{cases}=>BE.BA+CD.CA=CF.CB+BF.CB}}\)

\(=BC.\left(CF+BF\right)=BC^2\)

22 tháng 1 2019

\(BD=AB+AD=4+5=9\left(cm\right)\)

\(\Delta ABC\) và \(\Delta CBD\) có: 

        \(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)

          Góc B chung

\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)

b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)

c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

11 tháng 5 2018

a)  Xét  \(\Delta ABC\)và   \(\Delta MDC\)có:

      \(\widehat{C}\) chung

     \(\widehat{CAB}=\widehat{CMD}=90^0\)

suy ra:   \(\Delta ABC~\Delta MDC\)(g.g)

b)  Xét  \(\Delta BMI\)và    \(\Delta BAC\)có:

         \(\widehat{B}\)chung

        \(\widehat{BMI}=\widehat{BAC}=90^0\) 
suy ra:   \(\Delta BMI~\Delta BAC\) (g.g)

\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\) 

\(\Rightarrow\)\(BI.BA=BC.BM\)

c)    \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b)   \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)

Xét  \(\Delta BIC\)và    \(\Delta BMA\)có:

     \(\widehat{B}\)chung

    \(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)

suy ra:   \(\Delta BIC~\Delta BMA\) (g.g)

\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\)    (1)

c/m:  \(\Delta CAI~\Delta BKI\) (g.g)   \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)

Xét  \(\Delta IAK\)và     \(\Delta ICB\)có:

      \(\widehat{AIK}=\widehat{CIB}\) (dd)

      \(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)

suy ra:   \(\Delta IAK~\Delta ICB\)(g.g)

\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2) 

Từ (1) và (2) suy ra:  \(\widehat{IAK}=\widehat{BAM}\)

hay  AB là phân giác của \(\widehat{MAK}\)

d)  \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)

mà   \(\widehat{MAB}=\widehat{ICB}\) (câu c)  

\(\Rightarrow\)\(\widehat{ICB}=45^0\)

\(\Delta CKB\)vuông tại K có  \(\widehat{KCB}=45^0\)

\(\Rightarrow\)\(\widehat{CBK}=45^0\)

\(\Delta MBD\) vuông tại M  có   \(\widehat{MBD}=45^0\)

\(\Rightarrow\)\(\widehat{MDB}=45^0\)

hay   \(\Delta MBD\)vuông cân tại M

\(\Rightarrow\)\(MB=MD\)

\(\Delta ABC\) có  AM là phân giác 

\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)

ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

ÁP dụng tính chất dãy tỉ số = nhau ta có:

    \(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)

suy ra:   \(\frac{MB}{AB}=\frac{5}{7}\)  \(\Rightarrow\)\(MB=\frac{40}{7}\)

mà   \(MB=MD\) (cmt)

\(\Rightarrow\)\(MD=\frac{40}{7}\)

Vậy  \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)

\(\Delta ABC\) có  AM  là phân giác

\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)

\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)

Vậy   \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)

11 tháng 5 2018

C A M B K D I

a)  xét \(\Delta ABC\)  và \(\Delta MDC\)  có 

\(\widehat{ACB}=\widehat{MCD}\)  ( góc chung)

\(\widehat{CAB}=\widehat{CMD}=90^0\)  ( giả thiết )

\(\Rightarrow\Delta ABC\infty\Delta MDC\)  \(\left(g.g\right)\)

b) xét  \(\Delta BIM\) và \(\Delta BCA\)  có 

\(\widehat{IBM}=\widehat{CBA}\)  ( góc chung )

\(\widehat{BMI}=\widehat{BAC}=90^0\)

\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)

\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)

\(\Rightarrow BI.BA=BM.BC\)

P/S tạm thời 2 câu này trước đi đã 

30 tháng 4 2018

d) Tự vẽ hình nhé 

Dễ thấy I là trực tâm => CK là đường cao.

Do AM là phân giác nên góc MAB = góc MAC = 45 

mà góc MAB = góc ICB 

suy ra góc KBC = 45 

=> góc BDM = 45 

=> MB = MD (do tam giác MBD vuông cân) 

Do AM là phân giác nên ta có tỷ lệ sau \(\frac{MC}{6}=\frac{MB}{8}\)

Theo Pythagoras => (MC + MB)^2 = AC^2 + AB^2 = 100 

Áp dụng tính chất dãy tỉ số bằng nhau , suy ra 

\(\frac{MC}{6}=\frac{MB}{8}=\frac{MC+MB}{14}=\frac{10}{14}=\frac{5}{7}\)

=> \(\hept{\begin{cases}MC=\frac{30}{7}\\MB=\frac{40}{7}\end{cases}}\)

Suy ra \(MD=\frac{40}{7}\)

Suy ra \(S_{BCD}=\frac{1}{2}.MD.BC=\frac{1}{2}.\frac{40}{7}.10=\frac{200}{7}\)

Ta áp dụng Pythgoras vào tam giác CMD để tính CD = 50/7 

Sau đó tinh S(CMA) dựa vào tỷ lệ 

Rồi lấy S(BCD) - S(CMA) là ra S(BMAD) 

1) CMR nếu : x>y và xy=2 thì \(\dfrac{x^2+y^2}{x-y}\) \(\ge\)4 2)Cho tam giác ABC vuông ở A , D là điểm tùy ý trên cạnh AC . Qua D vè đường thẳng vuông góc với Bc ở F và cắt đường thẳng AB ở E. a) Chúng minh : tam giác ABC và tam giác FBE đồng dạng . b) Chứng minh: CD.CA=CF.CB c) Gọi G là giao điểm của BD và CE . Chứng minh : CD.CA+BD.BG không phù thuộc vào vị trí điểm D. 3) Cho hình chóp tứ giác đều S.ABCD...
Đọc tiếp

1) CMR nếu : x>y và xy=2 thì \(\dfrac{x^2+y^2}{x-y}\) \(\ge\)4

2)Cho tam giác ABC vuông ở A , D là điểm tùy ý trên cạnh AC . Qua D vè đường thẳng vuông góc với Bc ở F và cắt đường thẳng AB ở E.

a) Chúng minh : tam giác ABC và tam giác FBE đồng dạng .

b) Chứng minh: CD.CA=CF.CB

c) Gọi G là giao điểm của BD và CE . Chứng minh : CD.CA+BD.BG không phù thuộc vào vị trí điểm D.

3) Cho hình chóp tứ giác đều S.ABCD có chiều cao SH =3cm . Thể tích hình chóp là 16cm3.

a) Tính độ dài cạnh đáy của hình chóp .

b) Tính diện tích xung quanh của hình chóp .

4) Cho tam giác ABC nhọn , biết \(\widehat{A}\) =60 độ , đường cao BD , CE giao nhau tại H .

a) Chứng minh : tam giác ABD đồng dạng với tam giác ACD và AD.AC=AE.AB

b) Chứng minh : \(\widehat{ADE}=\widehat{ABC}\)

c) Tính : \(\dfrac{S_{ADE}}{S_{ABC}}\)

d) AH cắt BC tại F . Chứng minh : \(\dfrac{AE}{EB}.\dfrac{BF}{FC}.\dfrac{CD}{DA}\)=1

1

Câu 2: 

a: Xét ΔABC vuông tại A và ΔFBE vuông tại F có

góc B chung

Do đó: ΔABC đồng dạng với ΔFBE

b: Xét ΔCFD vuông tại F và ΔCAB vuông tại A có

góc BCA chung

Do đó: ΔCFD đồng dạng với ΔCAB

Suy ra: CF/CA=CD/CB

hay \(CF\cdot CB=CD\cdot CA\)