Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
A B C 5 5 6 M N
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm
a) xét \(\Delta ADB\)zà \(\Delta AEC\)có
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}=90^0\end{cases}}\)
\(=>\Delta ADB~\Delta AEC\left(g.g\right)\)
\(=>\frac{AD}{AE}=\frac{AB}{AC}=>AD.AC=AB.AE\left(dpcm\right)\)
\(taco\left(\frac{AD}{AE}=\frac{AB}{AC}=>\frac{AD}{AB}=\frac{AE}{AC}\right)\)
xét \(\Delta ADE\)zà \(\Delta ABCco\)
\(\hept{\begin{cases}\widehat{A}chung\\\frac{AD}{AB}=\frac{AE}{AC}\end{cases}=>\Delta ABE~\Delta ABC\left(c.g.c\right)}\)
=>\(\widehat{ADE}=\widehat{ABC}\left(dpcm\right)\)
c) Xét tam giác AEC zà tam giác HDC óc
góc AEC= góc HDC =90 độ
góc HCE chung
=> tam giác AEC~ tam giác HDC
=>\(\frac{AC}{HC}=\frac{EC}{DC}=>AC.DC=EC.HC\left(1\right)\)
xét tam giác BEC zà tam giác HEA có
góc BEC= góc AEH= 90 độ
góc BCE = góc EAH ( cùng phụ zới góc EBC )
=> tam giác BEC ~ tam giác HEA (g.g)
=>\(\frac{BE}{HE}=\frac{EC}{EA}=>BE.EA=EC.HE\left(2\right)\)
từ 1 zà 2 suy ra
\(BE.BA+CD.CA=BH.BD+CH.CE\)
kẻ AH zuông goc zới BC cắt BC tại F
Tự CM \(\hept{\begin{cases}\Delta CFH~\Delta CEB\\\Delta BFH~\Delta BDC\end{cases}=>\hept{\begin{cases}CF.CB=CH.CE\\BF.BC=BH.BD\end{cases}=>BE.BA+CD.CA=CF.CB+BF.CB}}\)
\(=BC.\left(CF+BF\right)=BC^2\)
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
a) Xét \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{C}\) chung
\(\widehat{CAB}=\widehat{CMD}=90^0\)
suy ra: \(\Delta ABC~\Delta MDC\)(g.g)
b) Xét \(\Delta BMI\)và \(\Delta BAC\)có:
\(\widehat{B}\)chung
\(\widehat{BMI}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BMI~\Delta BAC\) (g.g)
\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow\)\(BI.BA=BC.BM\)
c) \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b) \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)
Xét \(\Delta BIC\)và \(\Delta BMA\)có:
\(\widehat{B}\)chung
\(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)
suy ra: \(\Delta BIC~\Delta BMA\) (g.g)
\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\) (1)
c/m: \(\Delta CAI~\Delta BKI\) (g.g) \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)
Xét \(\Delta IAK\)và \(\Delta ICB\)có:
\(\widehat{AIK}=\widehat{CIB}\) (dd)
\(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)
suy ra: \(\Delta IAK~\Delta ICB\)(g.g)
\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2)
Từ (1) và (2) suy ra: \(\widehat{IAK}=\widehat{BAM}\)
hay AB là phân giác của \(\widehat{MAK}\)
d) \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)
mà \(\widehat{MAB}=\widehat{ICB}\) (câu c)
\(\Rightarrow\)\(\widehat{ICB}=45^0\)
\(\Delta CKB\)vuông tại K có \(\widehat{KCB}=45^0\)
\(\Rightarrow\)\(\widehat{CBK}=45^0\)
\(\Delta MBD\) vuông tại M có \(\widehat{MBD}=45^0\)
\(\Rightarrow\)\(\widehat{MDB}=45^0\)
hay \(\Delta MBD\)vuông cân tại M
\(\Rightarrow\)\(MB=MD\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)
ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
ÁP dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)
suy ra: \(\frac{MB}{AB}=\frac{5}{7}\) \(\Rightarrow\)\(MB=\frac{40}{7}\)
mà \(MB=MD\) (cmt)
\(\Rightarrow\)\(MD=\frac{40}{7}\)
Vậy \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)
\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)
Vậy \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)
C A M B K D I
a) xét \(\Delta ABC\) và \(\Delta MDC\) có
\(\widehat{ACB}=\widehat{MCD}\) ( góc chung)
\(\widehat{CAB}=\widehat{CMD}=90^0\) ( giả thiết )
\(\Rightarrow\Delta ABC\infty\Delta MDC\) \(\left(g.g\right)\)
b) xét \(\Delta BIM\) và \(\Delta BCA\) có
\(\widehat{IBM}=\widehat{CBA}\) ( góc chung )
\(\widehat{BMI}=\widehat{BAC}=90^0\)
\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)
\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)
\(\Rightarrow BI.BA=BM.BC\)
P/S tạm thời 2 câu này trước đi đã
d) Tự vẽ hình nhé
Dễ thấy I là trực tâm => CK là đường cao.
Do AM là phân giác nên góc MAB = góc MAC = 45
mà góc MAB = góc ICB
suy ra góc KBC = 45
=> góc BDM = 45
=> MB = MD (do tam giác MBD vuông cân)
Do AM là phân giác nên ta có tỷ lệ sau \(\frac{MC}{6}=\frac{MB}{8}\)
Theo Pythagoras => (MC + MB)^2 = AC^2 + AB^2 = 100
Áp dụng tính chất dãy tỉ số bằng nhau , suy ra
\(\frac{MC}{6}=\frac{MB}{8}=\frac{MC+MB}{14}=\frac{10}{14}=\frac{5}{7}\)
=> \(\hept{\begin{cases}MC=\frac{30}{7}\\MB=\frac{40}{7}\end{cases}}\)
Suy ra \(MD=\frac{40}{7}\)
Suy ra \(S_{BCD}=\frac{1}{2}.MD.BC=\frac{1}{2}.\frac{40}{7}.10=\frac{200}{7}\)
Ta áp dụng Pythgoras vào tam giác CMD để tính CD = 50/7
Sau đó tinh S(CMA) dựa vào tỷ lệ
Rồi lấy S(BCD) - S(CMA) là ra S(BMAD)
Câu 2:
a: Xét ΔABC vuông tại A và ΔFBE vuông tại F có
góc B chung
Do đó: ΔABC đồng dạng với ΔFBE
b: Xét ΔCFD vuông tại F và ΔCAB vuông tại A có
góc BCA chung
Do đó: ΔCFD đồng dạng với ΔCAB
Suy ra: CF/CA=CD/CB
hay \(CF\cdot CB=CD\cdot CA\)
a) Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
\(\widehat{BAH}\) chung
Do đó: ΔAEC\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AH\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(cmt)
nên \(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)
Xét ΔAEH và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)(cmt)
\(\widehat{EAH}\) chung
Do đó: ΔAEH\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AEH}=\widehat{ACB}\)(hai góc tương ứng)