K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔABC có

H là trung điểm của BC

HK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

AH là đường trung tuyến

BK là đường trung tuyến

AH cắt BK tại G

Do đó: G là trọng tâm

b: Vì G là trọng tâm

mà I là trung điểm của AB

nên C,G,I thẳng hàng

c: Ta có: ΔAHB vuông tại H

mà HI là đường trung tuyến

nên IA=IH(1)

Ta có: ΔAHC vuông tại H

mà HK là đường trung tuyến

nên KH=KA(2)

Từ (1) va(2) suy ra IK là đường trung trực của AH

a; Xét ΔABC có 

H là trung điểm của BC

HK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có 

AH là đường trung tuyến

BK là đường trung tuyến

AH cắt BK tại G

Do đó: G là trọng tâm của ΔABC

b: Xét ΔABC có

G là trọng tâm

CI là đường trung tuyến

Do đó: C,I,G thẳng hàng

c: Xét tứ giác AIHK có 

HK//AI

HK=AI

Do đó: AIHK là hình bình hành

mà AI=AK

nên AIHK là hình thoi

=>KI là đường trung trực của AH

10 tháng 6 2017

Bạn ơi xem lại đề giùm mink cái nha xem ΔABC có cân hay đều chi ko nha???

27 tháng 7 2018

Tran Tho dat mk cũng thấy thế nhưng bài mk đang cần cũng có đề giống bn ấy >_<

28 tháng 1 2020

c, G là trọng tâm

⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)

d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )

Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )

⇒FHGˆ=BAHˆ⇒FHG^=BAH^

    Chúc mn sang năm mới học giỏi nha !     

⇒ΔAFH⇒ΔAFHcân tại F

⇒FA=FH⇒FA=FH (1)

Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )

Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )

⇒FHBˆ=ABCˆ⇒FHB^=ABC^

hay FHBˆ=FBHˆFHB^=FBH^

⇒ΔFBH⇒ΔFBH cân tại F

⇒FB=FH⇒FB=FH

Từ (1), (2) ⇒FB=FA⇒FB=FA

⇒CF⇒CF là trung tuyến

Mà G là trọng tâm

⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )

Vậy...

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
23 tháng 6 2020

Hình bạn tự vẽ nha

a. Xét tam giác ABH và tam giác ACH có

  cạnh AH chung 

  góc BAH = góc CAH [ vì AH là pg góc A ]

  AB  =  AC [ vì tam giác ABC cân tại A ]

Do đó ; tam giác ABH = tam giác ACH [ c.g.c ]

\(\Rightarrow\)góc AHB = góc AHC [ góc tương ứng ]

mà góc AHB  + góc AHC = 180độ

\(\Rightarrow\)góc AHB = góc AHC = \(\frac{180}{2}\)= 90độ

\(\Rightarrow\)AH vuông góc với BC

b.Theo câu a ; tam giác ABH = tam giác ACH 

\(\Rightarrow\)HB = HC mà H\(\in\)BC 

\(\Rightarrow\)H là trung điểm của BC 

\(\Rightarrow\)AH là đường trung tuyến của tam giác ABC \((1)\)

Vì D là trung điểm của AC nên

BD là đường trung trực của tam giác ABC\((2)\)

Từ \((1),(2)\)và G là giao điểm của AH , BD suy ra

G là trọng tâm của tam giác ABC

c.Ta có góc AGC + góc CGH  = 180độ [ vì ba điểm A, G,H thẳng hàng ]

mà góc CGH = góc AGH [ đối đỉnh ]

\(\Rightarrow\)góc CGK = góc AGC  + góc AGH = 180độ 

Vậy góc CGK = 180độ

\(\Rightarrow\)Ba điểm C,G,K thẳng hàng

học tốt

Kết bạn với mình nhé

27 tháng 4 2023

sus

24 tháng 4 2018

A B C H G

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

24 tháng 4 2018

a)

Ta có tam giác ABC cân tại A ( gt )

Mà AH là đường cao 

Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC

=> BH = CH = BC / 2 = 6 / 2 = 3 cm

Xét tam giác AHB vuông tại H 

Ta có : AB= AH2 + BH( Py-ta-go )

            52   = AH2 + 32

=> AH2 = 16

=> AH = 4 cm

b)

Ta có G là trọng tâm của tam giác ABC ( gt )

=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC 

mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )

=> A,G,H thẳng hàng

c)

gọi CG cắt AB tại E ; BG cắt BC tại F

vì G là trọng tâm => CE ; BF là đường trung tuyến 

=> E là trung điềm AB ; F là trung điểm AC

Ta có EA = BA / 2 = 5 / 2 = 2,5 cm

AF = AC / 2 = 5 / 2 = 2,5 cm

Xét tam giác AEC và tam giác AFB 

ta có : AE = AF = 2,5

          góc BAC chung 

          AC = AB = 5

Nên 2 tam giác = nhau ( c-g-c )

=> góc ABG = góc ACG ( tương ứng )