K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC đồng dạng với ΔA'B'C'

=>\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}\)

A'B'=10,8+16,2=27(cm)

=>\(\dfrac{B'C'}{24.3}=\dfrac{A'C'}{32.7}=\dfrac{16.2}{27}=\dfrac{3}{5}\)

=>B'C'=14,58cm; A'C'=19,62(cm)

ΔABC đồng dạng với ΔA'B'C'

=>\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)

=>\(\dfrac{A'B'}{3}=\dfrac{A'C'}{7}=\dfrac{B'C'}{5}\)

=>A'B'=4,5cm

=>\(\dfrac{A'C'}{7}=\dfrac{B'C'}{5}=\dfrac{3}{2}\)

=>A'C'=10,5cm; B'C'=7,5cm

18 tháng 4 2020

xdhxef

18 tháng 4 2020

6.)

Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất  của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.

Theo đề:\(A'B'\)=4,5

Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

    \(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)

   \(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

18 tháng 1 2018

vé hình, dùng định lí talet áp dụng tàm giác đồng dạng

29 tháng 5 2017

Ta có  

a) Tính được A'B' = 6,2cm. Từ đó tính được B'C' = 9,3cm và A'C' = 12,4cm.

b) Tương tự câu a tính được A'B' = 26,2cm, B'C' = 39,3cm và A'C' = 52,4cm

4 tháng 2 2017

Ta có: Δ ABC ∼ Δ A'B'C'

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.

27 tháng 8 2018

Ta có: Δ ABC đồng dạng Δ A'B'C'

Bài tập: Khái niệm hai tam giác đồng dạng | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Khái niệm hai tam giác đồng dạng | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.