Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)
\(\Rightarrow A\left(-2;3\right)\)
AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)
\(\Rightarrow B\left(4;5\right)\)
*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)
Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)
BC: \(7x-3y-13=0\)
*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)
Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)
AC: \(5x+3y+1=0\)
Đáp án B
Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình
Do đó: B( 2; -1)
Tương tự: tọa độ điểm C( 1; 9)
PT các đường phân giác góc A là:
Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3 ta có:
T1(B). T1(C) < 0 và T2(B) T2(C) >0.
Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.
Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.
Bằng việc lần lượt giải các hệ phương trình bậc nhất hai ẩn, ta có tọa độ các đỉnh của tam giác là A − 4 7 ; 16 7 , B − 10 11 ; 14 11 , C − 8 ; 6 .
Ta có công thức tính diện tích tam giác ABC là: S = 1 2 . d A , B C . B C = 1 2 2. − 4 7 + 3. 16 7 − 2 13 . − 8 + 10 11 2 + 6 − 14 11 2 = 338 77
Đáp án là phương án C.
A B C P(1,2;5,6)
Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)
và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)
Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)
Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :
\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)
\(\Leftrightarrow19a^2+68ab-32b^2=0\)
\(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)
\(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)
Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)
Đường thẳng BC nhận \(\overrightarrow{n}=\left(\sqrt{3};-3\right)\) là 1 vtpt
Gọi \(\overrightarrow{n_1}=\left(a;b\right)\) là 1 vtpt của AB (với a;b không đồng thời bằng 0)
Do tam giác ABC đều \(\Rightarrow\widehat{\left(n_1;\overrightarrow{n}\right)}=60^0\)
\(\Rightarrow cos\left(\overrightarrow{n_1};\overrightarrow{n}\right)=\dfrac{\left|a\sqrt{3}-3b\right|}{\sqrt{a^2+b^2}.\sqrt{3+9}}=\dfrac{1}{2}\)
\(\Leftrightarrow\left(a-\sqrt{3}b\right)^2=a^2+b^2\)
\(\Leftrightarrow a^2+3b^2-2\sqrt{3}ab=a^2+b^2\)
\(\Leftrightarrow b^2=\sqrt{3}ab\Rightarrow\left[{}\begin{matrix}b=0\\b=\sqrt{3}a\end{matrix}\right.\)
\(\Rightarrow\) Phương trình 2 cạnh còn lại có dạng:
\(\left\{{}\begin{matrix}a\left(x-2\right)+0\left(y-0\right)=0\\a\left(x-2\right)+\sqrt{3}a\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+\sqrt{3}y-2=0\end{matrix}\right.\)