Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S A B C I H O K
a) \(SB^2=AS^2+AB^2=AS^2+AC^2=SC^2\Rightarrow SB=SC\) => \(\Delta\)SBC cân tại S
Do đó: AO,SH cắt nhau tại trung điểm I của cạnh BC
Xét \(\Delta\)SBC: trực tâm H, đường cao SI => \(IH.IS=IB.IC\)(1)
Tương tự: \(IB.IC=IO.IA\)(2)
Từ (1);(2) => \(IH.IS=IO.IA\)=> \(\Delta\)IHO ~ \(\Delta\)IAS => ^IHO = ^IAS = 900 => OH vuông góc IS (3)
Ta có: BC vuông góc với AI,AS => BC vuông góc với (SAI) => BC vuông góc OH (4)
Từ (3);(4) => OH vuông góc (SBC).
b) Xét tam giác SKI: IO vuông góc SK tại A, KO vuông góc SI tại H (cmt) => O là trực tâm tam giác SKI
Vậy SO vuông góc IK.
a: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
b: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>BC vuông góc AK
mà AK vuông góc SB
nên AK vuông góc (SBC)
Chắc là chóp SABC vì điểm D không thấy liên quan gì (có hay không cũng không ảnh hưởng bài toán)
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
b.
Do \(E\in SC\Rightarrow AE\in\left(SAC\right)\)
Mà \(BC\Rightarrow\left(SAC\right)\Rightarrow BC\perp AE\)
Lại có \(AE\perp SC\left(gt\right)\)
\(\Rightarrow AE\perp\left(SBC\right)\)
a: ta có: BC\(\perp\)AB(ABCD là hình vuông)
BC\(\perp\)SA(SA\(\perp\)(ABCD))
AB,SA cùng thuộc mp(SAB)
Do đó: BC\(\perp\)(SAB)
b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)
BD\(\perp\)SA(SA\(\perp\)(ABCD))
AC,SA cùng thuộc mp(SAC)
Do đó: BD\(\perp\)(SAC)
c: Ta có: BC\(\perp\)(SAB)
AH\(\subset\)(SAB)
Do đó: BC\(\perp\)AH
Ta có: AH\(\perp\)SB
AH\(\perp\)BC
SB,BC cùng thuộc mp(SBC)
Do đó: AH\(\perp\)(SBC)
d: Ta có: AH\(\perp\)(SBC)
SC\(\subset\)(SBC)
Do đó: AH\(\perp\)SC
Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))
CD\(\perp\)AD(ABCD là hình vuông)
SA,AD cùng thuộc mp(SAD)
Do đó: CD\(\perp\)(SAD)
=>AK\(\perp\)CD
mà AK\(\perp\)SD
và CD,SD cùng thuộc mp(SCD)
nên AK\(\perp\)(SCD)
=>AK\(\perp\)SC
Ta có: SC\(\perp\)AK
SC\(\perp\)AH
AK,AH cùng thuộc mp(AKH)
Do đó: SC\(\perp\)(AKH)