K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Hình vẽ (Nhập link vào rồi enter là ra):https://i.imgur.com/6tD58Ry.png

a) AD = EF

Xét tứ giác DEFB có: \(\hept{\begin{cases}DE//BF\left(gt\right)\\EF//DB\left(gt\right)\end{cases}\Rightarrow DEFB}\)là hình bình hành

=> DB = EF mà AD = DB (vì D là trung điểm của AB)

=> AD = EF (đpcm)

b) \(\widehat{ADE}=\widehat{EFC}\)

ta có: \(DE//BF\)=> \(\widehat{ADE}=\widehat{DBF}\)(đồng vị)(1)

\(EF//DB\)=> \(\widehat{DBF}=\widehat{EFC}\)(đồng vị)(2)

từ (1) và (2) => \(\widehat{ADE}=\widehat{EFC}\)(đpcm)

c) AE = EC

ta có: \(AD//EF\)=>\(\widehat{DAE}=\widehat{FEC}\)(đồng vị)

Xét \(\Delta ADE\)và \(\Delta EFC\)có: \(\hept{\begin{cases}\widehat{DAE}=\widehat{FEC}\left(cmt\right)\\AD=EF\left(cmt\right)\\\widehat{ADE}=\widehat{EFC}\left(cmt\right)\end{cases}}\)=> ​\(\Delta ADE=\Delta EFC\)

\(\Rightarrow AE=EC\left(đpcm\right)\)

Học tốt nhé ^3^

27 tháng 11 2019

Câu c) bạn bổ sung thêm 1 điều kiện cho 2 tam giác nhé: 

\(\widehat{ADE}=\widehat{EFC}\)

25 tháng 12 2016

A D E B F C a)Nối D với F. Xét \(\Delta BDF\)\(\Delta FDE\) ta có:

\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))

DF cạnh chung

\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))

\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)

\(\Rightarrow DB=EF\) (2 cạnh tương ứng )

\(DB=DA\) (D là trung điểm AB)

Suy ra AD=EF

b)Xét \(\Delta ADE\)\(\Delta EFC\:\) ta có:

\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)

\(AD=EF\) (cmt)

\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)

\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)

c)Vì \(\Delta ADE=\Delta EFC\) (cmt)

Suy ra \(AE=EC\) (2 cạnh tương ứng )

 

28 tháng 12 2015

CHTT nha Nguyễn Đào Hà Nhi

5 tháng 8 2022

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :

a) AD = EF

b)  Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE

D với F. Xét ΔBDF và ΔFDE ta có:

ˆBDF=^DFE (so le trong (Vì AB//EF (gt))

DF cạnh chung

ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))

⇒ΔBDF=ΔFDE (g.c.g)

⇒DB=EF (2 cạnh tương ứng )

Mà DB=DA (D là trung điểm AB)

Suy ra AD=EF

b)Xét ΔADE và ΔEFC ta có:

ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)

AD=EF (cmt)

ˆDAE=ˆFEC(đồng vị của DE//BC)

⇒ΔADE=ΔEFC (g.c.g)

c)Vì ΔADE=ΔEFC (cmt)

Suy ra AE=EC (2 cạnh tương ứng )

HT

2 tháng 3 2018

Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath

a)Nối D với F .

Do DE // BF , EF // BD

nên tam giác DEF=tam giác FBD(g.c.g)

=>EI=DB .

Ta lại có:AD=DB

=>AD=BF

b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .

AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)

=>tam giác ADE=tam giác EFC(g.c.g)

c)tam giác ADE=tam giác EFC(câu B)

=>AE=EC(g.c.g)

12 tháng 1 2019

tocuda

12 tháng 1 2019

A B C D E F 1 2 2 1 3 1 3 1

a) Nối DF

Vì \(DE//BC;F\in BC\Rightarrow DE//BC\Rightarrow\widehat{D_1}=\widehat{F_1}\). ( so le trong ) 

Tương tự :EF // BD \(\Rightarrow\widehat{D_2}=\widehat{F_2}\)

Xét \(\Delta DEF\) và \(\Delta FBD\) có : 

\(\widehat{D_1}=\widehat{F_1}\left(cmt\right)\)

Cạnh DF chung

\(\widehat{D_2}=\widehat{F_2\left(cmt\right)}\)

Suy ra : \(\Delta DEF=\Delta FBD\left(g.c.g\right)\)

\(\Rightarrow EF=BD\) . Mà \(AD=BD=\frac{1}{2}AB\) ( do D là trung điểm AB ) 

\(\Rightarrow AD=EF\left(đpcm\right)\)

b) Vì DE // BF nên \(\widehat{D_3}=\widehat{B_1}\) ( đồng vị )

Vì EF// BD nên \(\widehat{F_3}=\widehat{D_1}\) ( đồng vị )

Suy ra : \(\widehat{D_3}=\widehat{F_3}\)

Vì AB // EF nên \(\widehat{A}=\widehat{E_1}\) ( đồng vị )

Lại có : AD = EF ( cm ở câu a ) 

Do đó : \(\Delta ADE=\Delta EFC\left(g.c.g\right)\)

c) Vì \(\Delta ADE=\Delta EFC\) ( cm ở câu b ) 

\(\Rightarrow AE=EC\left(đpcm\right)\)

12 tháng 12 2017

a)Nối D với F .

Do DE // BF , EF // BD

nên tam giác DEF=tam giác FBD(g.c.g)

=>EI=DB .

Ta lại có:AD=DB

=>AD=BF

b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .

AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)

=>tam giác ADE=tam giác EFC(g.c.g)

c)tam giác ADE=tam giác EFC(câu B)

=>AE=EC(g.c.g)

12 tháng 12 2017

xét T/G EDF và BFD

DF chung EDF=BFD (so le trong ) vì ED//CB ( gt)

EFD=BDF ( so le trong ) vì EF//AB (gt)

=> EDF=BFD ( G.C.G)  => EF = BD ( 2 cạnh tương ứng ) mà DB =AD ( trung điểm D) => EF=AD ( dcpcm)

câu B) có EF=AD (CMT) 

            có CEF=EAC ( đồng vị ) vì EF//AB

            có EFC=ADE ( cùng đồng vị với góc B ) vì EF//AB và ED//CB  

          => ADE=EFC ( G.C.G)

câu C) 

Có  T/G ADE = EFC (CMT) => AE=EC (2 cạnh tương ứng ) 

xong k đúng dùm mình nha

a b c d e f

           

16 tháng 1 2015

lam so so thoi do

a,Xét tam giác CEF và tam giác FBD co

     DF la canh chung 

       góc EDF = góc DFB ( 2 góc so le trong của  DE//BC)

        góc BDF = Góc EDF( 2 góc so le trong của EF//AB)

=> tam giác CEF= tam giác FBD (g.c.g)

=>EF = DB ( 2 cạnh tương ứng)

 mà BD= AD ( D la trung diem cua AB) 

=> EF= AD(dpm)

b,mới nghĩ đến đó thôi

16 tháng 1 2015

 hình nè lo mà cảm ơn đi, bữa sau tui nghĩ tiếp câu b chợ, mới  được có 2 yếu tố A D B E C F