Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bạn đánh sai: sau khi vẽ hình tôi thấy đề đúng phải là: Đường tròn nội tiếp tâm O tiếp xúc với BC ở D, CA ở E và AB ở F.
Lời giải bài toán như sau: Kí hiệu độ dài ba cạnh BC,CA,AB tương ứng là \(a,b,c.\) Khi đó ta có \(AE=AF=p-a,BD=BF=p-b,CD=CE=p-c\) với \(p=\frac{a+b+c}{2}\) là nửa chu vi tam giác \(\Delta ABC.\)
Khi đó ta thấy \(FM=p-b\)\(<\)\(p-a=FA\), do đó \(M\) thuộc đoạn FA. Tương tự N thuộc đoạn EA. Ta có \(AM=AF-FM=b-a.\) Tương tự \(AN=c-a.\) Lấy các điểm \(X,Y\) thuộc các cạnh \(AC,AB\) sao cho \(CX=BY=a\to AM=AX,AN=AY\to MX\parallel NY\parallel EF.\) Theo định lý Ta-let \(\frac{BK}{BN}=\frac{BF}{BY}=\frac{BC}{BD}\to KD\parallel AC.\) Tương tự, \(KH\parallel AB.\)
Ta có \(\angle DKH=\angle AEF=\angle AFE=\angle DHK\) (so le trong và tính chất tiếp tuyến). Vậy \(\Delta DHK\) cân ở D, do đó \(DH=DK.\)
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).