Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
a) t/g AHC vuông tại H có: ACH + CAH = 900 (1)
t/g AHB vuông tại H có: ABH + BAH = 900 (2)
Từ (1) và (2) có: ACH = ABH (gt) suy ra CAH = BAH
t/g ACH = t/g ABH (cạnh góc vuông và góc nhọn kề)
=> AC = AB ( 2 cạnh tương ứng ) (đpcm)
b) t/g ACH = t/g ABH (cmt)
=> ACH = ABH ( 2 góc tương ứng )
Lại có: ACH + ACE = ABH + ABD = 1800
=> ACE = ABD
t/g ACE = t/g ABD ( c.g.c ) (đpcm)
c) Có :EC = BG (gt)
=> EC + BC = BD + BC
=> BE = CD
t/g ACD = t/g ABE ( c.g.c ) (đpcm)
d) t/g ACH = t/g ABH (câu a)
=> CH = BH ( 2 cạnh tương ứng )
Mà : CE = BD (gt)
Nên CH + CE = BH + BD
=> HE = HD
t/g AHE = t/g AHD ( 2 cạnh góc vuông )
=> EAH = DAH ( 2 góc tương ứng )
=> AH là phân giác DAE ( đpcm )
a) t/g AHC vuông tại H có: ACH + CAH = 900 (1)
t/g AHB vuông tại H có: ABH + BAH = 900 (2)
Từ (1) và (2) có: ACH = ABH (gt) suy ra CAH = BAH
t/g ACH = t/g ABH (cạnh góc vuông và góc nhọn kề)
=> AC = AB ( 2 cạnh tương ứng ) (đpcm)
b) t/g ACH = t/g ABH (cmt)
=> ACH = ABH ( 2 góc tương ứng )
Lại có: ACH + ACE = ABH + ABD = 1800
=> ACE = ABD
t/g ACE = t/g ABD ( c.g.c ) (đpcm)
c) Có :EC = BG (gt)
=> EC + BC = BD + BC
=> BE = CD
t/g ACD = t/g ABE ( c.g.c ) (đpcm)
d) t/g ACH = t/g ABH (câu a)
=> CH = BH ( 2 cạnh tương ứng )
Mà : CE = BD (gt)
Nên CH + CE = BH + BD
=> HE = HD
t/g AHE = t/g AHD ( 2 cạnh góc vuông )
=> EAH = DAH ( 2 góc tương ứng )
=> AH là phân giác DAE ( đpcm )
a) Ta có: góc B = góc C => tam giác ABC cân tại A
Do đó: AB = AC
câu bấm vào đây nhé Cho tam giác ABC có góc B=góc C, kẻ AH vuông góc với BC, H thuộc BC. Trên tia đối BC lấy điểm D ,Trên tia đối của tia CB lấy điểm E sao cho BD=CE. Chứng minh :a) AB = ACb) Tam giác ABD = Tam giác ACEc) Tam giác ACD = Tam giác ABEd) AH là tia phân giác của góc DAEe) Kẻ BK vuông góc AD, CI vuông góc AE . Chứng minh ba đường thẳng AH, BK, CI cùng đi qua 1 điểm
Hình bn tự vẽ nha :))
a) Xét \(\Delta\)ABM và \(\Delta\)ACM, có: \(\widehat{BAM}=\widehat{CAM};AMchung;\widehat{M=90^o}\)
=> \(\Delta ABM=\Delta ACM\)(gcg)
=> \(\widehat{ABC}=\widehat{ACB}\)(2g.t.ư); AB=AC ( 2c. t.ư)
b) *Xét \(\Delta\)ABD và \(\Delta\)ACE, có: \(\widehat{ABD}=\widehat{ACE}\)(do \(\widehat{ABC}=\widehat{ACB}\)); \(AB=AC\)(cmt); \(\widehat{BAD}=\widehat{CAE}\)(gt)
\(\Rightarrow\Delta ABD=\Delta ACE\)(gcg)
* Ta có: \(\widehat{CAD}=\widehat{EAD}-\widehat{CAE};\widehat{BAE}=\widehat{EAD}-\widehat{BAD}\)
Mà \(\widehat{BAD}=\widehat{CAE}\)(gt) => \(\widehat{CAD}=\widehat{BAE}\)
Xét \(\Delta\)ACD và \(\Delta\)ABE, có: \(\widehat{CAD}=\widehat{BAE}\)(cmt); \(AB=AC\)(cmt); \(\widehat{ACD}=\widehat{ABE}\)
\(\Rightarrow\Delta ACD=\Delta ABE\)(gcg)