\(\widehat{A}>90\) độ. Gọi I là trung điểm AC. Trên tia đối của ti...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có

I là trung điểm của AC
I là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy rA: AD=BC

b: Xét tứ giác DNBM có

DN//BM

DN=BM

Do đó: DNBM là hình bình hành

Suy rA:DB cắt NM tại trung điểm của mỗi đường

=>I là trung điểm của MN

c: Ta có: \(\widehat{A}>90^0\)

nên \(\widehat{AIB}< 90^0\)

=>\(\widehat{BIC}>90^0>\widehat{AIB}\)

24 tháng 1 2019

a)          Xét tam giác AIB và CID ta có

          IA=IC(gt)

           AIB=DIC(đói đỉnh)

            IB=ID

                =>tam giác AIB = tam gics CID

b)           đề sai nha M là trung điểm của AB mới đúng nha bạn

Xét tam giác AIM và CIN ta có

IA=IC(gt)

MAC=DCA(vì tam giác AIB=CID)

AM=AB chia 2

CN=CDchia 2

AB=CD(vì tg AIB=tg CID)

=>AM=CN

=>tg AIM=TG CIN

=> IM=IN(tương ứng)         (1)

=> GÓC AIM = CIN 

mà A,I,C thảng hàng 

=> M,I,N thẳng hàng             (2)

kết hợp (1) và (2) => I là trung điểm của MN

c) trong tam giác ABC có A > 90độ 

=> AIB < 90 độ

mà AIB+BIC=180 độ( 2 góc kề bù)

=> BIC > 90 độ

=> AIC<BIC (đpcm)

d)ta có : tam giac AIB = CID 

=> ACD=A

AC vuông góc vs CD => ACD = 90 độ

=> A=90độ 

=> tam giác ABC là Tam Giác Vuông Tại A

vậy để AC vuông góc vs CD 

Thì tam Giác ABC phải vuông tại A

ok nha em

13 tháng 2 2019

Toán của ai đấy

13 tháng 2 2019

thầy giao cho chị làm bài lớp 7 luôn đó

hehehe

1 tháng 3 2020

<Bạn kẻ hình giúp mình nha, mình không biết vào đâu để vẽ hình nữa>

a) Xét △BIC và △DIA có:

IC = IA (I: trung điểm AC) 

^BIC = ^DIA (đối đỉnh) 

IB = ID (gt) 

=> △ICB = △DIA (c.g.c) 

=> BC = AD (2 cạnh tương ứng) 

=> đpcm

b) Xét △AIB và △CID có:

IA = IC (I: trung điểm AC) 

^AIB = ^CID (đối đinh) 

IB = ID (gt)

=> △AIB = △CID (c.g.c) 

=> ^BAI = ^DCI (2 góc tương ứng) 

=> ^DCI = 90o

=> CD \(\perp\)AC (đpcm) 

c) Vì BM // AC, AC \(\perp\) CD

=> BM \(\perp\)MC => ^BMC = 90o

Xét △BAC và △MCB có:

^BAC = ^BMC (= 90o)

BC: chung

^MBC = ^BCA (BM // AC) 

=> △BAC = △MCB (ch-gn) 

=> AB = MC (2 cạnh tương ứng) 

Vì AB = MC (cmt), AB = CD (△AIB = △CID) 

=> CM = CD 

Xét △MCI và △DIC có:

^MCI = ^DCI (= 90o)

IC: chung

CM = CD (cmt) 

=> △MCI = △DIC (2 cave) 

=> ^CIM = ^CID (2 góc tương ứng) 

=> IC là phân giác ^MID (đpcm)

1 tháng 3 2020

A B C D M I1 2 3 4 5

Cái hình mình cân nó bị lỗi ý bn tự sửa lại nha :D

a, Xét \(\Delta IBC\)và \(\Delta IDA\)có:

\(BI=DI\left(gt\right)\)

\(AI=CI\left(I-là-tr.điểm-của-AC\right)\)

\(\widehat{BIC}=\widehat{I2}\left(đ.đỉnh\right)\)

\(\Rightarrow\Delta IBC=\Delta IDA\left(c-g-c\right)\)

\(\Rightarrow AD=BC\left(2c.t.ứ\right)\)

b, Xét \(\Delta ABI\) và \(\Delta CDI\)có:

\(BI=DI\left(gt\right)\)

\(\widehat{I5}=\widehat{I4}\left(đ.đỉnh\right)\)

\(AI=CI\left(......\right)\) 

\(\Rightarrow\Delta ABI=\Delta CDI\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{DCI}=90^0\)

\(\Rightarrow CD\perp AC\)

c, Ta có: \(\hept{\begin{cases}BM//AC\\BA\perp AC\end{cases}}\Rightarrow BM\perp AB\)

Xét tứ giác \(ABMC\) có:

\(\widehat{A}=\widehat{B}=\widehat{M}=90^0\)

\(\Rightarrow ABMC\) là HCN

\(\Rightarrow AB=MC\)

Xét \(\Delta ABI\) và \(\Delta CMI\) vuông tại \(A;C\)có:

\(AB=CM\)

\(AI=CI\)

\(\Rightarrow\Delta ABI=\Delta CMI\left(2cgv\right)\)

\(\Rightarrow\widehat{I5}=\widehat{I3}\)

Mà: \(\widehat{I5}=\widehat{I4}\)

\(\Rightarrow\widehat{I3}=\widehat{I4}\)

\(\RightarrowĐpcm\)

15 tháng 9 2015

mới bố này chém gió khủng khiếp