Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔABC, ta có:
∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)
⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o
+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B
Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C
Do đó:
Trong ΔBIC, ta có:
∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o
Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K
Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o
Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)
⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o
∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)
Xét ΔBIE và ΔBIK, ta có
∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)
BI cạnhchung
∠(I1) = ∠(I2) = 60o
Suy ra: ΔBIE = ΔBIK(g.c.g)
IK = IE (hai cạnh tương ứng) (1)
Xét ΔCIK và ΔCID, ta có
∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).
CI cạnh chung
∠(I3) = ∠(I4) = 60o
Suy ra: ΔCIK = ΔCID(g.c.g)
IK = ID (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: IE = ID
Em tham khảo tại link này nhé.
Câu hỏi của Tan Dang - Toán lớp 7 - Học toán với OnlineMath
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvcvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv??????????????????????????????????????????????????????????????????????????????????????????????????????????????
Kẻ IF là tia phân giác của BICˆ
Ta có: Aˆ+Bˆ+Cˆ=180o ( 3 góc của tam giác ABC)ΔABC )
⇒Bˆ+Cˆ=120o ( do Aˆ=60o)
⇒12(Bˆ+Cˆ)=12.120o
12Bˆ+12Cˆ=60o
⇒B1ˆ+C1ˆ=60o
Trong ΔBICΔBIC có: BICˆ+B1ˆ+C1ˆ=180o
⇒BICˆ+60o=180o
⇒BICˆ=120o
Vì IF là tia phân giác của BICˆI2ˆ=I3ˆ=12BICˆ=60o
Góc ngoài: I4ˆ=B1ˆ+C1ˆ=60o
I1ˆ=B1ˆ+C1ˆ=60o
xét ΔEIB,ΔFIB có:
I1ˆ=I2ˆ(=60o)
IB: cạnh chung
B1ˆ=B2ˆ(=12Bˆ)
⇒ΔEIB=ΔFIB(g−c−g)
⇒IE=IF ( cạnh t/ứng ) (1)
Xét ΔDIC,ΔFIC
I3ˆ=I4ˆ(=60o)
IC cạnh chung
C1ˆ=C2ˆ(=12Cˆ)
⇒ΔDIC=ΔFIC(g−c−g)
⇒ID=IF
Từ (1) và (2) suy ra ID=IE
⇒đpcm
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Tia phân giác của góc BIC cắt BC ở K. \(\Delta ABC\) có \(\widehat{A}=60^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0,\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{120^0}{2}=60^0.\)
\(\Delta BIC\) có \(\widehat{B_1}+\widehat{C_1}=60^0\Rightarrow\widehat{BIC}=180^0-60^0=120^0.\)
Suy ra \(\widehat{I_1}=60^0,\widehat{I_4}=60^0.\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0.\)
\(\Delta BIE = \Delta BIK\) (g.c.g) => IE = IK (2 cạnh tương ứng).
\(\Delta CID = \Delta CIK\)(g.c.g) => ID = IK (2 cạnh tương ứng).
Do đó ID = IE.
A B C I D E K 60 độ 1 2 3 4 1 1 2 2