Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
Ta sử dụng 2 công thức:
\(\bullet \tan (180-\alpha)=-\tan \alpha\)
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan A+\tan B+\tan C=\tan A+\tan B+\tan (180-A-B)\)
\(=\tan A+\tan B-\tan (A+B)=\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A.\tan B}\)
\(=(\tan A+\tan B)\left(1+\frac{1}{1-\tan A.\tan B}\right)=(\tan A+\tan B).\frac{-\tan A.\tan B}{1-\tan A.\tan B}\)
\(=-\tan A.\tan B.\frac{\tan A+\tan B}{1-\tan A.\tan B}=-\tan A.\tan B.\tan (A+B)\)
\(=\tan A.\tan B.\tan (180-A-B)\)
\(=\tan A.\tan B.\tan C=\text{VP}\)
Do đó ta có đpcm
Tam giác $ABC$ có ba góc nhọn nên \(\tan A, \tan B, \tan C>0\)
Áp dụng BĐT Cauchy ta có:
\(P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A.\tan B.\tan C}\)
\(\Leftrightarrow P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A+\tan B+\tan C}\)
\(\Rightarrow P\geq 3\sqrt[3]{P}\)
\(\Rightarrow P^3\geq 27P\Leftrightarrow P(P^2-27)\geq 0\)
\(\Rightarrow P^2-27\geq 0\Rightarrow P\geq 3\sqrt{3}\)
Vậy \(P_{\min}=3\sqrt{3}\). Dấu bằng xảy ra khi \(\angle A=\angle B=\angle C=60^0\)
Câu b)
Ta sử dụng 2 công thức chính:
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
\(\bullet \tan (90-\alpha)=\frac{1}{\tan \alpha}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{C}{2}(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan (90-\frac{A+B}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan (\frac{A+B}{2})}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+1-\tan \frac{A}{2}.\tan \frac{B}{2}=1=\text{VP}\)
Ta có đpcm.
Cũng giống phần a, ta biết do ABC là tam giác nhọn nên
\(\tan A, \tan B, \tan C>0\)
Đặt \(\tan A=x, \tan B=y, \tan C=z\). Ta có: \(xy+yz+xz=1\)
Và \(T=x+y+z\)
\(\Rightarrow T^2=x^2+y^2+z^2+2(xy+yz+xz)\)
Theo hệ quả quen thuộc của BĐT Cauchy:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Rightarrow T^2\geq 3(xy+yz+xz)=3\)
\(\Rightarrow T\geq \sqrt{3}\Leftrightarrow T_{\min}=\sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow \angle A=\angle B=\angle C=60^0\)
\(\frac{sinA}{cosA}+\frac{sinB}{cosB}=\frac{2cos\frac{C}{2}}{sin\frac{C}{2}}\Leftrightarrow\frac{sinA.cosB+cosA.sinB}{cosA.cosB}=\frac{2sin\frac{C}{2}.cos\frac{C}{2}}{sin^2\frac{C}{2}}\)
\(\Leftrightarrow\frac{sin\left(A+B\right)}{cosA.cosB}=\frac{2sinC}{1-cosC}\Leftrightarrow\frac{sinC}{cosA.cosB}=\frac{2sinC}{1-cosC}\)
\(\Leftrightarrow1-cosC=2cosA.cosB=cos\left(A+B\right)+cos\left(A-B\right)\)
\(\Leftrightarrow1-cosC=-cosC+cos\left(A-B\right)\)
\(\Leftrightarrow cos\left(A-B\right)=1\Rightarrow A-B=0\Rightarrow A=B\)
\(\Rightarrow\) Tam giác ABC cân tại C
\(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=\left(sin^2A+sin^2B\right)\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=cos^2A+cos^2B+sin^2A.cot^2B+sin^2B.cot^2A\)
\(\Leftrightarrow cos^2A+cos^2B=\frac{sin^2A.cos^2B}{sin^2B}+\frac{sin^2B.cos^2A}{sin^2A}\)
\(\Leftrightarrow cos^2A\left(\frac{sin^2B}{sin^2A}-1\right)=cos^2B\left(1-\frac{sin^2A}{sin^2B}\right)\)
\(\Leftrightarrow\frac{cos^2A\left(sin^2B-sin^2A\right)}{sin^2A}=\frac{cos^2B\left(sin^2B-sin^2A\right)}{sin^2B}\)
\(\Leftrightarrow cot^2A\left(sin^2B-sin^2A\right)=cot^2B\left(sin^2B-sin^2A\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2B=sin^2A\\cot^2A=cot^2B\end{matrix}\right.\) \(\Rightarrow A=B\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
Bài 14.
Áp dụng định lí hàm số Cô sin, ta có:
\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)
Bài 19.
Áp dụng định lí sin và định lí Cô sin, ta có:
\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)
ta có \(S=\frac{a^2-\left(b-c^2\right)}{4}=\frac{a^2-b^2-c^2+2bc}{4}\)
mà theo định lý cosin ta có \(a^2-b^2-c^2=-2bc.cos\left(A\right)\Rightarrow S=\frac{bc\left(1-cos\left(A\right)\right)}{2}\)
mà ta có công thức \(S=\frac{b.c.sin\left(A\right)}{2}\Rightarrow1-cos\left(A\right)=sin\left(A\right)\Rightarrow cos\left(A\right)+sin\left(A\right)=1\)
mà \(cos^2\left(A\right)+sin^2\left(A\right)=1\Rightarrow2sin\left(A\right).cos\left(A\right)=0\Rightarrow\orbr{\begin{cases}A=0^0\\A=90^0\end{cases}}\)
Do A>0 nên \(A=90^0\)Vậy ABC vuoogn tại A
A B C h d
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :
\(5x-y-7=0\)
Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)
Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :
\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)
Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)
Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài