K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

24 tháng 4 2017

a) Kẻ BKACBK⊥AC

Ta được: ˆKBC=60KBC^=60∘ˆKBA=60=6038=22KBA^=60∘=60∘−38∘=22∘

Xét tam giác KBC vuông tại K có:

BK=BCsinC=11sin30=5,5(cm)BK=BC⋅sinC=11⋅sin30∘=5,5(cm)

Xét tam giác KBA vuông tại K có:

AB=BKcos22=5,5cos225,932(cm).AB=BKcos22∘=5,5cos⁡22∘≈5,932(cm).

Xét tam giác ABN vuông tại N có:

AN=ABsin385,932sin383,652(cm)AN=AB⋅sin38∘≈5,932⋅sin38∘≈3,652(cm)

b) Xét tam giác ANC vuông tại N có AC=ANsinC

Bài 2: 

\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)

\(\Leftrightarrow2009-BC^2=980\)

hay \(BC=7\sqrt{21}\left(cm\right)\)

NV
18 tháng 7 2021

Kẻ đường cao BD (D thuộc AC)

Trong tam giác vuông ABD:

\(cosA=\dfrac{AD}{AB}\Rightarrow AD=AB.cosA=12.cos30^0=6\sqrt{3}\)

\(sinA=\dfrac{BD}{AB}\Rightarrow BD=AB.sinA=12.sin30^0=6\)

\(\Rightarrow CD=AC-AD=8\)

Áp dụng định lý Pitago cho tam giác vuông BCD:

\(BC=\sqrt{BD^2+CD^2}=10\left(cm\right)\)

NV
18 tháng 7 2021

undefined