Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó:AMCD là hình bình hành
Suy ra: CD//AM và CD=AM
=>CD//MB và CD=MB
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
b: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó: ABNC là hình bình hành
Suy ra: AC//BN
Bạn tham khảo ở đây
Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath
Ta có hình vẽ:
M N A B C D
a/ Xét tam giác AMN và tam giác CDN có:
MN = ND (GT)
\(\widehat{ANM}=\widehat{CND}\) (đối đỉnh)
AN = NC (GT)
=> tam giác AMN = tam giác CDN (c.g.c)
Ta có: tam giác AMN = tam giác CDN
=> AM = CD (2 cạnh tương ứng)
Ta có: AM = MB (GT) (1)
Ta có: AM = CD (đã chứng minh trên) (2)
Từ (1), (2) => MB = CD (đpcm)
b/ Ta có: tam giác AMN = tam giác CDN (đã chứng minh trên)
=> \(\widehat{MAN}=\widehat{DCN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong nên
=> AM // CD
Vì A,M,B thẳng hàng nên MB // CD
=> \(\widehat{BMC}=\widehat{MCD}\) (so le trong) (1)
Ta có: BM = CD (đã chứng minh trên) (2)
MC: cạnh chung (3)
Từ (1),(2),(3) => tam giác BMC = tam giác DMC
=> \(\widehat{DMC}=\widehat{MCB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> MN // BC (đpcm)
Xét ΔAMN và ΔCDN có
MN=ND(gt)
\(\widehat{MNA}=\widehat{DNC}\) (đối đỉnh)
AN=CN(gt)
=>ΔAMN=ΔCDN (c.g.c)
=>AM=CD
Mà AM=MB(gt)
=>CD=MB
b) Vì AM=MB(gt);AN=NC(gt)
=>MN là đường trung bình của ΔABC
=> \(MN=\frac{1}{2}BC\)
Đề sai nhá phải là trên tia đơi của tia NM