K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B E M C K I

a) Xét: "tam giác" ABM và "tam giác" EMC có:

- AM = ME ( gt )

- BM = CM ( gt )

- "góc" AMB = "góc" CME ( đối đỉnh )

=> "Tam giác" ABM = "Tam giác" EMC ( c.g.c )

b) Ta có: "tam giác" AMB = "Tam giác" EMC nên "góc" BAM = "góc" AEC 

Mặt khác: hai góc BAM và AEC nằm ở vị trị so le trong 

=> AB // CE

c) Xét : "tam giác" AIB và "tam giác" CIK có:

- AI = IC ( gt )

- BI = IK ( gt )

- "góc" AIB = "góc" CIK ( đối đỉnh )

=> "tam giác" AIB = " tam giác" CIK ( c.g.c )

=> "góc" BAI = "góc" KCI ( 2 góc tương ứng )

=> KC // AB

Theo tiên đề ơ- clit về hai đường thẳng song song thì qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đó:

Mà: AB // CE (theo b) và KC // AB (cmt) 

Nên: E, K, C thẳng hàng

____________________ End _________________________

Mình nghĩ vậy ... không biết có đúng không :) còn mấy chữ nằm trong ngoặc kép ( " " ) bạn thay bằng kí hiệu nha, mình không biết viết kí hiệu ...... hì hì

8 tháng 1 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK

4 tháng 12 2021

loz

Xét ABM và EMC có :

AM = ME

BM = CM

Góc AMB = góc CME ( đối đỉnh )

=> tam giac ABM = Tam giác EMC 

Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC

Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong 

=> AB // CE

c Xét tam giác AIB và tam gics CIK có :

 AI = IC 

BI = Ik

Góc AIB = góc CIK ( đối đỉnh )

=> tam giác AIB  = tam giác CIK

25 tháng 12 2020

lpl

24 tháng 11 2019

A B C E M

a) Xét t/giác AMB và t/giác EMC

có  MA = ME (gt)

   BM = MC (gt)

 \(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

=> t/giác AMB = t/giác EMC (c.g.c)

b) Do t/giác AMB = t/giác EMC (cmt)

=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CE

=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)

mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE

c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến

=> AM = BM = MC = 1/2BC

=> BC = 2AM

HD C2: CM t/giác ABC = t/giác CEA (C.g.c)

=>  BC = EA (2 cạnh t/ứng

=> 1/2BC = 1/2EM

=> 1/2BC = MA (vì EM = MA = 1/2EM)

=> AM = 2BC

a) Xét ∆ABM và ∆CME ta có : 

BM = MC ( M là trung điểm BC)

AM = ME 

AMB = CME ( đối đỉnh) 

=> ∆ABM = ∆CME(c.g.c)

b) Xét ∆AMC và ∆BME ta có : 

AM = ME 

BM = MC 

AMC = BME ( đối đỉnh) 

=> ∆AMC = ∆BME(c.g.c)

=> ACM = MBE 

Mà 2 góc này ở vị trí so le trong 

=> AC//BE 

c) Vì ∆AMB = ∆CME 

=> ABC = BCK 

Xét ∆IMB và ∆CMK ta có :

BM = MC 

BI = CK 

ABC = BCE (cmt)

=> ∆IMB = ∆CMK (c.g.c)

=> IMB = CMK 

Ta có : 

BMI + IMC = 180° ( kề bù) 

Mà IMB = CMK 

=> CMK + IMC = 180° 

=> IMK = 180° 

=> IMK là góc bẹt 

=> I , M , K thẳng hàng 

19 tháng 12 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK