Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2a32
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√412.a32.a=a234
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
a) tính BC:
Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC
ta có: BC2=BA2+AC2
=>BC2= 62+82
=> BC2= 36+64
=>BC2= 100
=> BC= \(\sqrt{100}\)
=> BC= 10 (cm)
b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:
Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)
- tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)
=> \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))
có bạn nào giúp minh câu c và d được k. mình k cho
Kẻ MK//BD
Xét ΔBDC có
M là trung điểm của CB
MK//BD
Do đó: K là trung điểm của CD
=>CK=KD=1/2CD=1/3AC=AD
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
Xét ΔBDC có MK//BD
nên MK/BD=CM/CB=1/2
Xét ΔAMK có DI//MK
nên DI/MK=1/2
=>DI=1/2MK=1/4BD
Kẻ BH vuông góc với AC
\(S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC\)
\(S_{ABD}=\dfrac{1}{2}\cdot BH\cdot AD\)
=>\(\dfrac{S_{ABC}}{S_{ABD}}=\dfrac{AC}{AD}=3\)
=>\(S_{ABD}=\dfrac{20}{3}\left(cm\right)\)
Kẻ AK vuông góc BD
\(S_{ABD}=\dfrac{1}{2}\cdot AK\cdot BD\)
\(S_{ABI}=\dfrac{1}{2}\cdot AK\cdot BI\)
=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{BD}{BI}=\dfrac{4}{3}\)
=>\(S_{ABI}=\dfrac{20}{3}:\dfrac{4}{3}=\dfrac{20}{4}=5\left(cm^2\right)\)