Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b = - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)
a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)
b) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)
Vậy hàm số y = sin x có đạo hàm là hàm số \(y' = \cos x\)
a) \(\cos \left( {a + b} \right) = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right] = \sin \left( {\frac{\pi }{2} - a} \right).\cos b - \cos \left( {\frac{\pi }{2} - a} \right).\sin b = \cos a.\cos b - \sin a.\sin b\)
b) \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right] = \cos a.\cos \left( { - b} \right) - \sin a.\sin \left( { - b} \right) = \sin a.\sin b + \cos a.\cos b\)
Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α−2sinα(cos4α+cos2α)=sin5α−2sinα.cos4α−2sinα.cos2α
=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α−(sin5α−sin3α)−(sin3α−sinα)
=\sin \alpha .=sinα.
Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α−2sinα(cos4α+cos2α)=sinα
a) \(\tan \left( {a + b} \right) = \frac{{\sin \left( {a + b} \right)}}{{\cos \left( {a + b} \right)}} = \frac{{\sin a.\cos b + \cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\)
\(\begin{array}{l} = \frac{{\sin a.\cos b + \cos a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} = \frac{{\sin a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} + \frac{{\cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\\ = \frac{{\frac{{\sin a.\cos b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} + \frac{{\frac{{\cos a.\sin b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} = \frac{{\tan a}}{{1 - \tan a.\tan b}} + \frac{{\tan b}}{{1 - \tan a.\tan b}}\\ = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\end{array}\)
\( \Rightarrow \tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)
b)
\(\tan \left( {a - b} \right) = \tan \left( {a + \left( { - b} \right)} \right) = \frac{{\tan a + \tan \left( { - b} \right)}}{{1 - \tan a.\tan \left( { - b} \right)}} = \frac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)
Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)
\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)
Chứng minh:
Không mất tính tổng quát, giả sử \(\Delta ABC\) có \(\widehat{A}=90^0\).
Khi đó ta có \(sinB=cosC\)
\(\Rightarrow sin^2A+sin^2B+sin^2C=1+cos^2C+sin^2C=2\)
a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:
\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)
b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)